Synthesis 2022; 54(05): 1272-1286
DOI: 10.1055/a-1671-6856
feature

Photoredox-Catalyzed Ring-Opening Addition Reaction between Benzyl Bromides and Cyclic Ethers

Cuiwen Kuang
a   Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. of China
,
Chuanfa Ni
a   Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. of China
,
b   Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
,
Jinbo Hu
a   Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. of China
› Author Affiliations
This work was supported by the National Key Research and Development Program of China (2016YFB0101200), the National Natural Science Foundation of China (21632009), the Key Programs of the Chinese Academy of Sciences (KGZD-EW-T08), the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH049).


Abstract

A novel nucleophilic reaction between cyclic ethers and benzyl bromides is achieved under photoredox catalysis. The reaction proceeds through a single-electron-transfer (SET) pathway rather than a common SN2 mechanism. By two steps of reduction and oxidation, a benzyl bromide heterolyzes to give a carbocation and bromide ion under mild conditions, and then a cyclic ether captures both the carbo­cation and bromide ion to afford the addition product.

Supporting Information



Publication History

Received: 21 September 2021

Accepted: 18 October 2021

Accepted Manuscript online:
18 October 2021

Article published online:
09 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 1b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 3 Dagousset G, Carboni A, Masson G, Magnier E. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Chap. 14. Groult H, Leroux FR, Tressaud A. Elsevier; Amsterdam: 2017: 389
  • 4 Shen M, Shen Y, Wang P. Org. Lett. 2019; 21: 2993
  • 5 Webb WW, Park JB, Cole EL, Donnelly DJ, Bonacorsi SJ, Ewing WR, Doyle AG. J. Am. Chem. Soc. 2020; 142: 9493
  • 6 Wayner DD. M, McPhee DJ, Griller D. J. Am. Chem. Soc. 1988; 110: 132
  • 7 Kuang C, Zhou X, Xie Q, Ni C, Gu Y, Hu J. Org. Lett. 2020; 22: 8670
    • 8a Cloke JB, Pilgrim FJ. J. Am. Chem. Soc. 1939; 61: 2667
    • 8b Ahmad S, Iqbal J. Chem. Lett. 1987; 5: 953
    • 8c Iqbal J, Mukhopadhyay M, Mandal AK. Synlett 1997; 876
    • 8d Iqbal J, Srivastava RR. Tetrahedron 1991; 47: 3155
    • 8e Coles SJ, Costello JF, Draffin WN, Hursthouse MB, Paver SP. Tetrahedron 2005; 61: 4447
    • 8f Yadav JS, Reddy BV. S, Reddy PM. K, Dash U, Gupta MK. J. Mol. Catal. A: Chem. 2007; 271: 266
    • 8g Yadav JS, Reddy BV. S, Reddy PM. K, Gupta MK. Tetrahedron Lett. 2005; 46: 8493
    • 8h Srinivas K, Suresh P, Babu CN, Sathyanarayana A, Prabusankar G. RSC Adv. 2015; 5: 15579
    • 8i Suresh V, Suryakiran N, Rajesh K, Selvam JJ. P, Srinivasulu M, Venkateswarlu Y. Synth. Commun. 2008; 38: 92
    • 8j Enthaler S, Weidauer M. Catal. Lett. 2012; 142: 168
    • 8k Pasha MA, Manjula K. Synth. Commun. 2007; 37: 927
    • 8l Bodduri VD. V, Choi KM, Vaidya RR, Patil K, Chirumarry S, Jang K, Yoon Y, Falck JR, Shin D. Tetrahedron Lett. 2015; 56: 7089
    • 8m Umeda R, Kaiba K, Tanaka T, Takahashi Y, Nishimura T, Nishiyama Y. Synlett 2010; 3089
    • 8n Umeda R, Nishimura T, Kaiba K, Tanaka T, Takahashi Y, Nishiyama Y. Tetrahedron 2011; 67: 7217
    • 8o Fitch JW, Payne WG, Westmoreland D. J. Org. Chem. 1983; 48: 751
    • 8p Pri-Bar I, Stille JK. J. Org. Chem. 1982; 47: 1215
    • 8q Luzzio FA, Bobb RA. Tetrahedron 1999; 55: 1851
    • 8r Guo Q, Miyaji T, Hara R, Shen B, Takahashi T. Tetrahedron 2002; 58: 7327
  • 9 Kosmrlj B, Sket B. J. Org. Chem. 2000; 65: 6890
  • 10 Garzelli R, Samaritani S, Malanga C. Tetrahedron 2008; 64: 4183
    • 11a It was reported that amines can be oxidized to radical cation.

    • For examples under photoredox catalysis, see:
    • 11b Prier CK, MacMillan DW. C. Chem. Sci. 2014; 5: 4173
    • 11c Ahn DK, Kang YW, Woo SK. J. Org. Chem. 2019; 84: 3612
  • 12 Emer E, Twilton J, Tredwell M, Calderwood S, Collier TL, Liégault B, Taillefer M, Gouverneur V. Org. Lett. 2014; 16: 6004
  • 13 Okano T, Sugiura H, Fumoto M, Matsubara H, Kusukawa T, Fujita M. J. Fluorine Chem. 2002; 114: 91
  • 14 Richard JR. J. Am. Chem. Soc. 1989; 111: 1455
  • 15 Yusuke Y, Shoji H, Hisanori S. Tetrahedron 2010; 66: 473
  • 16 Zhao Y, Huang W, Zheng J, Hu J. Org. Lett. 2011; 13: 5342