Synthesis 2021; 53(15): 2570-2582
DOI: 10.1055/a-1426-4744
short review

Syntheses and Transformations of Sulfinamides

Qiaoling Zhang
,
Jufang Xi
,
He Ze
,
Zeng Qingle
We are thankful to the National Natural Science Foundation of China (No. 20672088 and No. 21372034) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2020Z003) for their financial support.


Abstract

Sulfinamides, especially enantiopure sulfinamides, are widely used in organic and medicinal synthesis. Syntheses and transformations of racemic and enantioenriched sulfinamides have achieved great progress. Especially sulfinamides demonstrate interesting and valuable reactivity, which deserves to be pertinent. This review summarizes the latest development in the synthesis and transformation of sulfinamides and will be helpful for future related research.

1 Introduction

2 Synthesis of Sulfinamides

2.1 Synthesis of Racemic Sulfinamides

2.2 Synthesis of Enantiomerically Pure Sulfinamides

2.3 Synthesis of Other Sulfinamides

3 Transformations of Sulfinamides

3.1 Condensation with Aldehydes and Ketones

3.2 Reaction with Alkynes

3.3 Reaction with Alkenes

3.4 Reaction with Aryl and Alkyl Halides

3.5 Reaction with Alcohols, Dibenzyl Ether, and Benzyl Mercaptan

3.6 Synthesis of tert-Butyldisulfanyl-Substituted Hetarenes

3.7 Synthesis of Asymmetric Sulfides

3.8 Synthesis of N-Phosphino-sulfinamide Ligands

3.9 Asymmetric Synthesis of γ-Amino Acids

3.10 Sulfonylation of Heterocyclic Compounds

4 Summary and Outlook



Publication History

Received: 16 January 2021

Accepted after revision: 11 March 2021

Accepted Manuscript online:
11 March 2021

Article published online:
12 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Davis FA, Friedman AJ, Kluger EW. J. Am. Chem. Soc. 1974; 96: 5000
  • 2 Davis FA, Reddy RE, Szewczyk JM, Portonovo PS. Tetrahedron Lett. 1993; 34: 6229
  • 3 Davis FA, Reddy RE, Szewczyk JM, Reddy GV, Portonovo PS, Zhang H, Fanelli D, Reddy RT, Zhou P, Carroll PJ. J. Org. Chem. 1997; 62: 2555
  • 4 Ellermann C, Coenen A, Niehues P, Leitz P, Kochhäuser S, Dechering DG, Fehr M, Eckardt L, Frommeyer G. Cardiovasc. Toxicol. 2020; 20: 168
  • 5 Sun Y, Zhang X, Yan Y, Tu Y, Feng X, Jiang W, Zheng F. RSC Adv. 2016; 6: 106268
  • 6 Gaowa A, Horibe T, Kohno M, Tabata Y, Harada H, Hiraoka M, Kawakami K. Eur. J. Pharm. Biopharm. 2015; 92: 228
  • 7 Zheng W, Tan M, Yang L, Zhou L, Zeng Q. Eur. J. Org. Chem. 2020; 1764
  • 8 Kuchukulla RR, Li F, Zhou L, He Z, Zeng Q. Green Chem. 2019; 21: 5808
  • 9 Jiang W, Huang Y, Zhou L, Zeng Q. Sci. China: Chem. 2019; 62: 1213
  • 10 Li F, Wang D, Chen H, He Z, Zhou L, Zeng Q. Chem. Commun. 2020; 56: 13029
  • 11 Tu X, Xiong J, Li Z, Zhou L, Emmanouil C, Zeng Q. Monatsh. Chem. 2016; 147: 1101
  • 12 Sun X, Tu X, Dai C, Zhang X, Zhang B, Zeng Q. J. Org. Chem. 2012; 77: 4454
  • 13 Cogan DA, Liu G, Kim K, Backes BJ, Ellman JA. J. Am. Chem. Soc. 1998; 120: 8011
  • 14 García Ruano JL, Alemán J, Fajardo C, Parra A. Org. Lett. 2005; 7: 5493
  • 15 Maldonado MF, Sehgelmeble F, Bjarnemark F, Svensson M, Åhman J, Arvidsson PI. Tetrahedron 2012; 68: 7456
    • 16a Yusuff N, Doré M, Joud C, Visser M, Springer C, Xie X, Herlihy K, Porter D, Touré BB. ACS. Med. Chem. Lett. 2012; 3: 579
    • 16b Dhara S, Diesendruck CE. Eur. J. Org. Chem. 2017; 1184
  • 17 Wojaczyńska E, Wojaczyński J. Chem. Rev. 2020; 120: 4578
  • 18 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
  • 19 Ferreira F, Botuha C, Chemla F, Pérez-Luna A. Chem. Soc. Rev. 2009; 38: 1162
  • 20 Liu G, Cogan DA, Ellman JA. J. Am. Chem. Soc. 1997; 119: 9913
  • 21 Bolm C, Schlingloff G, Bienewald F. J. Mol. Catal. A: Chem. 1997; 117: 347
  • 22 Zhu R.-H, Shi X.-X. Tetrahedron: Asymmetry 2011; 22: 387
    • 23a Chelouan A, Recio E, Alcudia A, Khiar N, Fernández I. Eur. J. Org. Chem. 2014; 6935
    • 23b Fernández I, Khiar N, Llera JM, Alcudia F. J. Org. Chem. 1992; 57: 6789
    • 23c Khiar N, Fernández I, Alcudia F. Tetrahedron Lett. 1994; 35: 5719
  • 24 Han Z, Krishnamurthy D, Grover P, Fang QK, Su X, Wilkinson HS, Lu Z, Magiera D, Senanayake CH. Tetrahedron 2005; 61: 6386
  • 25 Wudl F, Lee TB. K. J. Am. Chem. Soc. 1973; 95: 6349
  • 26 Benson SC, Snyder JK. Tetrahedron Lett. 1991; 32: 5885
  • 27 Rebiere F, Samuel O, Ricard L, Kagan HB. J. Org. Chem. 1991; 56: 5991
  • 28 DeCroos P, Han ZS, Sidhu K, Lorenz J, Nummy L, Byrne D, Qu B, Xu Y, Wu L, Lee H, Roschangar F, Song JJ, Senanayake CH. Org. Process Res. Dev. 2019; 23: 263
  • 29 Zhang Y, Chitale S, Goyal N, Li G, Han ZS, Shen S, Ma S, Grinberg N, Lee H, Lu BZ, Senanayake CH. J. Org. Chem. 2012; 77: 690
    • 30a Davis FA, Zhang Y, Andemichael Y, Fang T, Fanelli DL, Zhang H. J. Org. Chem. 1999; 64: 1403
    • 30b Worch C, Atodiresei I, Raabe G, Bolm C. Chem. Eur. J. 2010; 16: 677
  • 31 Ma L.-j, Chen S.-s, Li G.-x, Zhu J, Wang Q.-w, Tang Z. ACS Catal. 2019; 9: 1525
  • 32 Liao S, Čoric I, Wang Q, List B. J. Am. Chem. Soc. 2012; 134: 10765
  • 33 Coulomb J, Certal V, Fensterbank L, Lacôe E, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 633
  • 34 Fernández-Salas JA, Rodríguez-Fernández MM, Maestro MC, García Ruano JL. Chem. Commun. 2014; 50: 6046
  • 35 Matos PM, Stockman RA. Org. Biomol. Chem. 2020; 18: 6429
  • 36 Coulomb J, Certal V, Larraufie M.-H, Ollivier C, Corbet J.-P, Mignani G, Fensterbank L, Lacôte E, Malacria M. Chem. Eur. J. 2009; 15: 10225
  • 37 Konishi H, Tanaka H, Manabe K. Org. Lett. 2017; 19: 1578
  • 38 Mei H, Liu J, Pajkert R, Röschenthaler G.-V, Han J. Org. Biomol. Chem. 2020; 18: 3761
  • 39 Chatterjee S, Makai S, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 758
  • 40 Liu G, Cogan DA, Owens TD, Tang TP, Ellman JA. J. Org. Chem. 1999; 64: 1278
  • 41 Owens TD, Souers AJ, Ellman JA. J. Org. Chem. 2003; 68: 3
  • 42 Morales S, Guijarro FG, García Ruano JL, Cid MB. J. Am. Chem. Soc. 2014; 136: 1082
  • 43 Xue Q, Mao Z, Shi Y, Mao H, Cheng Y, Zhu C. Tetrahedron Lett. 2012; 53: 1851
  • 44 Chodroff S, Whitmore WF. J. Am. Chem. Soc. 1950; 72: 1073
  • 45 Jiang Y, Loh T.-P. Chem. Sci. 2014; 5: 4939
  • 46 Liu Z, Chen X, Chen J, Qu L, Xia Y, Wu H, Ma H, Zhu S, Zhao Y. RSC Adv. 2015; 5: 71215
  • 47 Bi W.-Z, Zhang W.-J, Feng S.-X, Li Z.-J, Ma H.-L, Zhu S.-H, Chen X.-L, Qu L.-B, Zhao Y.-F. New J. Chem. 2019; 43: 17941
  • 48 Mistico L, Ay E, Huynh V, Bourderioux A, Chemla F, Ferreira F, Oble J, Perez-Luna A, Poli G, Prestat G. J. Organomet. Chem. 2014; 760: 124
  • 49 Krasnova LB, Yudin AK. J. Org. Chem. 2004; 69: 2584
  • 50 Prakash A, Dibakar M, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett. 2011; 52: 5625
  • 51 Qin S, Luo Y, Sun Y, Tian L, Jiang S, Yan J, Yang G. Tetrahedron Lett. 2019; 60: 151167 ; corrigendum: Tetrahedron Lett. 2020, 61,151563
  • 52 Wu X, Rönn R, Gossas T, Larhed M. J. Org. Chem. 2005; 70: 3094
  • 53 Lv X, Xiang Q, Zeng Q. Org. Prep. Proced. Int. 2014; 46: 164
  • 54 Lv X, Zhou Y, Zhang A, Zhou L, Zeng Q. Toxicol. Environ. Chem. 2016; 98: 1155
  • 55 Zhang G, Xu S, Xie X, Ding C, Shan S. RSC Adv. 2017; 7: 9431
  • 56 Zhang G, Xing Y, Xu S, Ding C, Shan S. Synlett 2018; 29: 1232
  • 57 Li X, Li S, Li Q, Dong X, Li Y, Yu X, Xu Q. Tetrahedron 2016; 72: 264
  • 58 Xiao M, Yue X, Xu R, Tang W, Xue D, Li C, Lei M, Xiao J, Wang C. Angew. Chem. Int. Ed. 2019; 58: 10528
  • 59 Xu Q, Li Q, Zhu X, Chen J. Adv. Synth. Catal. 2013; 355: 73
  • 60 Oldenhuis NJ, Dong VM, Guan Z. J. Am. Chem. Soc. 2014; 136: 12548
  • 61 Xi X, Li Y, Wang G, Xu G, Shang L, Zhang Y, Xia L. Org. Biomol. Chem. 2019; 17: 7651
  • 62 Cano R, Ramón DJ, Yus M. J. Org. Chem. 2011; 76: 5547
  • 63 Xiao H, Chen J, Liu M, Wu H, Ding J. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 2553
  • 64 Iranpoor N, Firouzabadi H, Jamalia A. Synlett 2005; 1447
  • 65 Leino R, Lönnqvist J.-E. Tetrahedron Lett. 2004; 45: 8489
  • 66 Gerland B, Désiré J, Lepoivre M, Décout J. Org. Lett. 2007; 9: 3021
  • 67 Chauhan SM. S, Kumar A, Srinivas KA. Chem. Commun. 2003; 2348
  • 68 Grossi L, Montevecchi PC, Strazzari S. J. Am. Chem. Soc. 2001; 123: 4853
  • 69 Yuan J, Liu C, Lei A. Org. Chem. Front. 2015; 2: 677
  • 70 Tanaka K, Ajiki K. Tetrahedron Lett. 2004; 45: 5677
  • 71 Ryu EK, Choe YS, Byun SS, Lee K.-H, Chi DY, Choi Y, Kim B.-T. Bioorg. Med. Chem. 2004; 12: 859
  • 73 Kang X, Yan R, Yu G, Pang X, Liu X, Li X, Xiang L, Huang G. J. Org. Chem. 2014; 79: 10605
  • 74 Kumaraswamy G, Raju R, Narayanarao V. RSC Adv. 2015; 5: 22718
  • 75 Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem. 2017; 19: 4785
  • 76 Ma L.-j, Li G.-x, Huang J, Zhu J, Tang Z. Tetrahedron Lett. 2018; 59: 4255
  • 77 Solá J, Revés M, Riera A, Verdaguer X. Angew. Chem. Int. Ed. 2007; 46: 5020
  • 78 Revés M, Achard T, Solá J, Riera A, Verdaguer X. J. Org. Chem. 2008; 73: 7080
  • 79 Brun S, Parera M, Quintana AP, Roglans A, León T, Achard T, Solà J, Verdaguer X, Riera A. Tetrahedron 2010; 66: 9032
  • 80 Doran S, Achard T, Riera A, Verdaguer X. J. Organomet. Chem. 2012; 717: 135
  • 81 Reddy LR, Prasad K, Prashad M. J. Org. Chem. 2012; 77: 6296
  • 82 Meyer AU, Wimmer A, König B. Angew. Chem. Int. Ed. 2017; 56: 409
  • 83 Ji Y.-Z, Zhang J.-Y, Li H.-J, Han C, Yang Y.-K, Wu Y.-C. Org. Biomol. Chem. 2019; 17: 4789
  • 84 Foubelo F, Yus M. Chem. Rec. 2020; 20: 1
  • 85 Philip RM, Radhika S, Saranya PV, Anilkumar G. RSC Adv. 2020; 10: 42441