Subscribe to RSS
DOI: 10.1055/a-1269-6168
Proteinurie
Vom Risikomarker zum RisikofaktorZUSAMMENFASSUNG
Die Proteinurie ist ein empfindlicher Marker für eine Nierenschädigung und ein guter Prädiktor für das Fortschreiten einer chronischen Nierenschädigung hin zu einer terminalen Nierenerkrankung. Ob die Proteinurie dabei allerdings nur einen Risikomarker darstellt, der lediglich die Nierenschädigung widerspiegelt, oder ob sie durch toxische Effekte auf Podozyten und Nierentubuli selbst einen Risikofaktor darstellt, ist bisher nicht klar. Während der Fokus aktueller Leitlinien im Wesentlichen auf der Quantität der Proteinurie liegt, zeigen immer mehr experimentelle Daten, dass auch der Qualität der Proteinurie eine wesentliche Rolle hinsichtlich ihres Schädigungspotenzials und ihres Risikos zukommt.
Publication History
Article published online:
17 March 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Levin A, Stevens PE, Bilous RW. et al Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1-150
- 2 Kuhlmann U, Böhler J, Luft FC, Kunzendorf U, Alscher MD. Hrsg Nephrologie: Pathophysiologie – Klinik – Nierenersatzverfahren. 6. Aufl. Stuttgart: Thieme; 2015
- 3 Johnson RJ, Feehally J, Floege J, Tonelli M. Comprehensive Clinical Nephrology E-Book. 6th ed. Amsterdam (Niederlande): Elsevier; 2018
- 4 Klinke R, Pape HC, Kurtz A, Silbernagl S. Physiologie. Stuttgart: Thieme; 2009
- 5 Matsushita K, van der Velde M, Astor BC. et al Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073-2081 DOI: 10.1016/s0140-6736(10)60674-5.
- 6 van der Velde M, Matsushita K, Coresh J. et al Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79: 1341-1352 DOI: 10.1038/ki.2010.536.
- 7 Ballantyne FC, Gibbons J, O’Reilly DS. Urine albumin should replace total protein for the assessment of glomerular proteinuria. Ann Clin Biochem 1993; 30: 101-103 DOI: 10.1177/000456329303000119.
- 8 Lamb EJ, MacKenzie F, Stevens PE. How should proteinuria be detected and measured?. Ann Clin Biochem 2009; 46: 205-217 DOI: 10.1258/acb.2009.009007.
- 9 Newman DJ, Thakkar H, Medcalf EA. et al Use of urine albumin measurement as a replacement for total protein. Clin Nephrol 1995; 43: 104-109
- 10 Levey AS, de Jong PE, Coresh J. et al The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011; 80: 17-28 DOI: 10.1038/ki.2010.483.
- 11 Astor BC, Matsushita K, Gansevoort RT. et al Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 2011; 79: 1331-1340 DOI: 10.1038/ki.2010.550.
- 12 Gansevoort RT, Matsushita K, van der Velde M. et al Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 2011; 80: 93-104 DOI: 10.1038/ki.2010.531.
- 13 Hallan SI, Ritz E, Lydersen S. et al Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol 2009; 20: 1069-1077 DOI: 10.1681/asn.2008070730.
- 14 Brantsma AH, Bakker SJ, Hillege HL. et al Cardiovascular and renal outcome in subjects with K/DOQI stage 1–3 chronic kidney disease: the importance of urinary albumin excretion. Nephrol Dial Transplant 2008; 23: 3851-3858 DOI: 10.1093/ndt/gfn356.
- 15 Dawnay A, Wilson AG, Lamb E. et al Microalbuminuria in systemic sclerosis. Ann Rheum Dis 1992; 51: 384-388 DOI: 10.1136/ard.51.3.384.
- 16 Gross JL, de Azevedo MJ, Silveiro SP. et al Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005; 28: 164-176 DOI: 10.2337/diacare.28.1.164.
- 17 Ninomiya T, Perkovic V, de Galan BE. et al Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 2009; 20: 1813-1821 DOI: 10.1681/asn.2008121270.
- 18 Shihabi ZK, Konen JC, O’Connor ML. Albuminuria vs urinary total protein for detecting chronic renal disorders. Clin Chem 1991; 37: 621-624
- 19 Gansevoort RT, Correa-Rotter R, Hemmelgarn BR. et al Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 2013; 382: 339-352 DOI: 10.1016/s0140-6736(13)60595-4.
- 20 Jackson CE, Solomon SD, Gerstein HC. et al Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 2009; 374: 543-550 DOI: 10.1016/s0140-6736(09)61378-7.
- 21 Matsushita K, Sang Y, Ballew SH. et al Subclinical atherosclerosis measures for cardiovascular prediction in CKD. J Am Soc Nephrol 2015; 26: 439-447 DOI: 10.1681/asn.2014020173.
- 22 Kannel WB, Stampfer MJ, Castelli WP. et al The prognostic significance of proteinuria: the Framingham study. Am Heart J 1984; 108: 1347-1352 DOI: 10.1016/0002-8703(84)90763-4.
- 23 Yuyun MF, Khaw KT, Luben R. et al Microalbuminuria independently predicts all-cause and cardiovascular mortality in a British population: The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. Int J Epidemiol 2004; 33: 189-198 DOI: 10.1093/ije/dyh008.
- 24 Nitsch D, Grams M, Sang Y. et al Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013; 346: f324 DOI: 10.1136/bmj.f324.
- 25 Miettinen H, Haffner SM, Lehto S. et al Proteinuria predicts stroke and other atherosclerotic vascular disease events in nondiabetic and non-insulin-dependent diabetic subjects. Stroke 1996; 27: 2033-2039 DOI: 10.1161/01.str.27.11.2033.
- 26 Aguilar MI, O‘Meara ES, Seliger S. et al Albuminuria and the risk of incident stroke and stroke types in older adults. Neurology 2010; 75: 1343-1350 DOI: 10.1212/WNL.0b013e3181f73638.
- 27 Nobakhthaghighi N, Kamgar M, Bekheirnia MR. et al Relationship between urinary albumin excretion and left ventricular mass with mortality in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006; 1: 1187-1190 DOI: 10.2215/cjn.00750306.
- 28 Zandi-Nejad K, Eddy AA, Glassock RJ. et al Why is proteinuria an ominous biomarker of progressive kidney disease?. Kidney Int Suppl 2004: S76-S89 DOI: 10.1111/j.1523-1755.2004.09220.x
- 29 Artunc F, Worn M, Schork A. et al Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2018: e13249 DOI: 10.1111/apha.13249
- 30 Rinschen MM, Hoppe AK, Grahammer F. et al N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton. J Am Soc Nephrol 2017; 28: 2867-2878 DOI: 10.1681/asn.2016101119.
- 31 Hohne M, Frese CK, Grahammer F. et al Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney Int 2018; 93: 1308-1319 DOI: 10.1016/j.kint.2017.12.012.
- 32 Lambers Heerspink HJ, Gansevoort RT. Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD: The Pro View. Clin J Am Soc Nephrol 2015; 10: 1079-1088 DOI: 10.2215/cjn.11511114.
- 33 Wörn M, Bohnert BN, Alenazi F. et al Proteasuria in nephrotic syndrome-quantification and proteomic profiling. J Proteomics 2020; 230: 103981 DOI: 10.1016/j.jprot.2020.103981.
- 34 Remuzzi G, Bertani T. Is glomerulosclerosis a consequence of altered glomerular permeability to macromolecules?. Kidney Int 1990; 38: 384-394 DOI: 10.1038/ki.1990.217.
- 35 Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage?. J Am Soc Nephrol 2006; 17: 2974-2984 DOI: 10.1681/ASN.2006040377.
- 36 Chen L, Wang Y, Tay YC. et al Proteinuria and tubulointerstitial injury. Kidney Int Suppl 1997; 61: S60-S62
- 37 Okada T, Nagao T, Matsumoto H. et al Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton) 2012; 17: 68-75 DOI: 10.1111/j.1440-1797.2011.01525.x.
- 38 Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int 2006; 69: 440-449 DOI: 10.1038/sj.ki.5000141.
- 39 Gekle M. Renal tubule albumin transport. Annu Rev Physiol 2005; 67: 573-594 DOI: 10.1146/annurev.physiol.67.031103.154845.
- 40 Macconi D, Chiabrando C, Schiarea S. et al Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J Am Soc Nephrol 2009; 20: 123-130 DOI: 10.1681/ASN.2007111233.
- 41 Dixon R, Brunskill NJ. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J Am Soc Nephrol 1999; 10: 1487-1497
- 42 Morigi M, Macconi D, Zoja C. et al Protein overload-induced NF-κB activation in proximal tubular cells requires H2O2 through a PKC-dependent pathway. J Am Soc Nephrol 2002; 13: 1179-1189
- 43 Drumm K, Bauer B, Freudinger R, Gekle M. Albumin induces NF-κB expression in human proximal tubule-derived cells (IHKE-1). Cell Physiol Biochem 2002; 12: 187-196 DOI: 10.1159/000066278.
- 44 Lee E, Pollock C, Drumm K. et al Effects of pathophysiological concentrations of albumin on NHE3 activity and cell proliferation in primary cultures of human proximal tubule cells. Am J Physiology-Renal Physiology 2003; 285: F748-F757 DOI: 10.1152/ajprenal.00442.2002.
- 45 Wang Y, Chen J, Chen L. et al Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 1997; 8: 1537-1545
- 46 Zoja C, Donadelli R, Colleoni S. et al Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kB activation. Kidney Int 1998; 53: 1608-1615 DOI: 10.1046/j.1523-1755.1998.00905.x.
- 47 Vlachojannis J, Tsakas S, Petropoulou C. et al Endothelin-1 in the kidney and urine of patients with glomerular disease and proteinuria. Clin Nephrol 2002; 58: 337-343 DOI: 10.5414/cnp58337.
- 48 Zoja C, Morigi M, Figliuzzi M. et al Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am J Kidney Dis 1995; 26: 934-941 DOI: 10.1016/0272-6386(95)90058-6.
- 49 Whaley-Connell AT, Morris EM, Rehmer N. et al Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. Am J Nephrol 2007; 27: 15-23 DOI: 10.1159/000098432.
- 50 Diwakar R, Pearson AL, Colville-Nash P. et al The role played by endocytosis in albumin-induced secretion of TGF-β1 by proximal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 292: F1464-F1470 DOI: 10.1152/ajprenal.00069.2006.
- 51 Goumenos DS, Tsakas S, El Nahas AM. et al Transforming growth factor-β1 in the kidney and urine of patients with glomerular disease and proteinuria. Nephrol Dial Transplant 2002; 17: 2145-2152 DOI: 10.1093/ndt/17.12.2145..
- 52 Stephan JP, Mao W, Filvaroff E. et al Albumin stimulates the accumulation of extracellular matrix in renal tubular epithelial cells. Am J Nephrol 2004; 24: 14-19 DOI: 10.1159/000075347.
- 53 Zoja C, Abbate M, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 2015; 30: 706-712 DOI: 10.1093/ndt/gfu261.
- 54 Bohnert BN, Menacher M, Janessa A. et al Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int 2018; 93: 159-172 DOI: 10.1016/j.kint.2017.07.023.
- 55 Schork A, Woern M, Kalbacher H. et al Association of Plasminuria with Overhydration in Patients with CKD. Clin J Am Soc Nephrol 2016; 11: 761-769 DOI: 10.2215/cjn.12261115.
- 56 Haerteis S, Schork A, Dorffel T. et al Plasma kallikrein activates the epithelial sodium channel in vitro but is not essential for volume retention in nephrotic mice. Acta Physiol (Oxf) 2018; 224: e13060 DOI: 10.1111/apha.13060.
- 57 Hruby Z, Wendycz D, Kopeć W. et al Effect of antiproteolytic drugs: epsilon-aminocaproic acid (EACA) and aprotinin on experimental anti-GBM nephritis. Nephrol Dial Transplant 1996; 11: 32-39
- 58 Raij L, Tian R, Wong JS. et al Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress. Am J Physiol Renal Physiol 2016; 311: F1308-F1317 DOI: 10.1152/ajprenal.00162.2016.
- 59 Bohnert BN, Daiminger S, Worn M. et al Urokinase-type plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)-mediated sodium retention in experimental nephrotic syndrome. Acta Physiol (Oxf) 2019: e13286 DOI: 10.1111/apha.13286
- 60 Xiao M, Bohnert BN, Aypek H. et al Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome. Acta Physiol (Oxf) 2020: e13512 DOI: 10.1111/apha.13512
- 61 Lewis EJ, Hunsicker LG, Bain RP. et al The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329: 1456-1462 DOI: 10.1056/nejm199311113292004.
- 62 Ruggenenti P, Perna A, Gherardi G. et al Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999; 354: 359-364 DOI: 10.1016/s0140-6736(98)10363-x.
- 63 Lewis EJ, Hunsicker LG, Clarke WR. et al Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851-860 DOI: 10.1056/NEJMoa011303.
- 64 Agodoa LY, Appel L, Bakris GL. et al Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 2001; 285: 2719-2728 DOI: 10.1001/jama.285.21.2719.
- 65 Rahman M, Pressel S, Davis BR. et al Renal outcomes in high-risk hypertensive patients treated with an angiotensin-converting enzyme inhibitor or a calcium channel blocker vs a diuretic: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med 2005; 165: 936-946 DOI: 10.1001/archinte.165.8.936.
- 66 Molnar MZ, Kalantar-Zadeh K, Lott EH. et al Angiotensin-converting enzyme inhibitor, angiotensin receptor blocker use, and mortality in patients with chronic kidney disease. J Am Coll Cardiol 2014; 63: 650-658 DOI: 10.1016/j.jacc.2013.10.050.
- 67 Jafar TH, Stark PC, Schmid CH. et al Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003; 139: 244-252 DOI: 10.7326/0003-4819-139-4-200308190-00006.
- 68 Kunz R, Friedrich C, Wolbers M. et al Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 2008; 148: 30-48 DOI: 10.7326/0003-4819-148-1-200801010-00190.
- 69 Wiviott SD, Raz I, Bonaca MP. et al Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380: 347-357 DOI: 10.1056/NEJMoa1812389.
- 70 Wanner C, Inzucchi SE, Lachin JM. et al Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334 DOI: 10.1056/NEJMoa1515920.
- 71 Neal B, Perkovic V, Mahaffey KW. et al Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 644-657 DOI: 10.1056/NEJMoa1611925.
- 72 Perkovic V, Jardine MJ, Neal B. et al Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380: 2295-2306 DOI: 10.1056/NEJMoa1811744.
- 73 Heerspink HJL, Stefánsson BV, Correa-Rotter R. et al Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020; 383: 1436-1446 DOI: 10.1056/NEJMoa2024816.
- 74 Droebner K, Pavkovic M, Grundmann M. et al The Novel Nonsteroidal and Selective Mineralocorticoid Receptor Antagonist Finerenone Differentiates from SGLT2 Inhibitor Empagliflozin by Anti-Fibrotic Effects in a Progressive Mouse Kidney Fibrosis Model. ASN Kidney Week 2020 Reimagined; 22.10.2020