Klinische Neurophysiologie 2019; 50(04): 206-212
DOI: 10.1055/a-1009-4971
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Intraoperatives Neuromonitoring in der Wirbelsäulenchirurgie

Intraoperative Neuromonitoring in Spine Surgery
Ehab Shiban
1   Neurochirurgische Klinik und Poliklinik; Fakultät für Medizin, Klinikum rechts der Isar, Technische Universität München
2   Neurochirurgische Klinik, Universitätsklinikum Augsburg
,
Sebastian Ille
1   Neurochirurgische Klinik und Poliklinik; Fakultät für Medizin, Klinikum rechts der Isar, Technische Universität München
,
Bernhard Meyer
1   Neurochirurgische Klinik und Poliklinik; Fakultät für Medizin, Klinikum rechts der Isar, Technische Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
19 November 2019 (online)

Zusammenfassung

Das intraoperative Neuromonitoring (IONM) findet abgesehen von seiner Anwendung bei der Resektion von supratentoriellen Raumforderungen auch Anwendung in der Wirbelsäulenchirurgie. Hier muss einerseits zwischen verschiedenen Indikationen für den Einsatz des IONM, sowie den einzelnen IONM-Modalitäten unterschieden werden. Diese werden teilweise kontrovers diskutiert. Im folgenden Artikel sollen sowohl die Indikationen wie auch die Modalitäten des IONM in der Wirbelsäulenchirurgie beschrieben und basierend auf der aktuellen Evidenz diskutiert werden.

Abstract

Apart from its application during the resection of supratentorial tumors, intraoperative neuromonitoring (IONM) is also used during spine surgery. The indications for its use in spinal surgery and the appropriate IONM modalities are still controversial. In the following manuscript, different indications and modalities of IONM in spine surgery will be introduced and discussed based on current evidence.

 
  • Literatur

  • 1 Nash Jr. CL, Lorig RA, Schatzinger LA. et al. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 1977; 126: 100-105
  • 2 Lesser RP, Raudzens P, Luders H. et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 1986; 19: 22-25 doi:10.1002/ana.410190105
  • 3 Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32: 219-226
  • 4 Hadley MN, Shank CD, Rozzelle CJ. et al. Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2017; 81: 713-732. doi:10.1093/neuros/nyx466
  • 5 Ney JP, van der Goes DN. Letter: Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2018; 83: E78-e79. doi:10.1093/neuros/nyy206
  • 6 Sala F, Skinner SA, Arle JE. et al. Letter: Guidelines for the use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2018; 83: E82-e84. doi:10.1093/neuros/nyy231
  • 7 Vogel R, Balzer J, Gertsch J. et al. Letter: Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2018; 82: E190-e191. doi:10.1093/neuros/nyy093
  • 8 Wilkinson M, Houlden D. Letter: Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2018; 83: E74-e75. doi:10.1093/neuros/nyy157
  • 9 Weinzierl MR, Reinacher P, Gilsbach JM. et al. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev 2007; 30: 109-116, discussion 116 doi:10.1007/s10143-006-0061-5
  • 10 Bostrom A, Kanther NC, Grote A. et al. Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC research notes 2014; 7: 908 doi:10.1186/1756-0500-7-908
  • 11 Epstein FJ, Farmer JP, Freed D. Adult intramedullary spinal cord ependymomas: the result of surgery in 38 patients. Journal of neurosurgery 1993; 79: 204-209. doi:10.3171/jns.1993.79.2.0204
  • 12 Sala F, Bricolo A, Faccioli F. et al. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2007; 16 Suppl 2 S130–139 DOI: 10.1007/s00586-007-0423-x.
  • 13 Costa P, Peretta P, Faccani G. Relevance of intraoperative D wave in spine and spinal cord surgeries. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2013; 22: 840-848 doi:10.1007/s00586-012-2576-5
  • 14 Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 1998; 4: e1
  • 15 Kurokawa R, Kim P, Itoki K. et al. False-Positive and False-Negative Results of Motor Evoked Potential Monitoring During Surgery for Intramedullary Spinal Cord Tumors. Operative neurosurgery (Hagerstown. Md) 2018; 14: 279-287. doi:10.1093/ons/opx113
  • 16 Zentner J. Noninvasive motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurgery 1989; 24: 709-712
  • 17 Sala F, Manganotti P, Grossauer S. et al. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 2010; 26: 473-490. doi:10.1007/s00381-009-1081-6
  • 18 Kothbauer K, Schmid UD, Seiler RW. et al. Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 1994; 34: 702-707 discussion 707
  • 19 Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 2014; 31: 313-322. doi:10.1097/WNP.0000000000000054
  • 20 Traynelis VC, Abode-Iyamah KO, Leick KM. et al. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. Journal of neurosurgery Spine 2012; 16: 107-113 doi:10.3171/2011.10.SPINE11199
  • 21 Fehlings MG, Smith JS, Kopjar B. et al. Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study. Journal of neurosurgery Spine 2012; 16: 425-432. doi:10.3171/2012.1.SPINE11467
  • 22 Shiban E, Meyer B. Intraoperative neuromonitoring in cervical deformity surgery. Der Orthopade 2018; 47: 526-529. doi:10.1007/s00132-018-3567-y
  • 23 Ajiboye RM, Zoller SD, Sharma A. et al. Intraoperative Neuromonitoring for Anterior Cervical Spine Surgery: What Is the Evidence?. Spine 2017; 42: 385-393. doi:10.1097/brs.0000000000001767
  • 24 Resnick DK, Anderson PA, Kaiser MG. et al. Electrophysiological monitoring during surgery for cervical degenerative myelopathy and radiculopathy. Journal of neurosurgery Spine 2009; 11: 245-252. doi:10.3171/2009.2.SPINE08730
  • 25 Sharan A, Groff MW, Dailey AT. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 15: electrophysiological monitoring and lumbar fusion. Journal of neurosurgery Spine 2014; 21: 102-105. doi:10.3171/2014.4.SPINE14324
  • 26 Parker SL, Amin AG, Farber SH. et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. Journal of neurosurgery Spine 2011; 15: 130-135. doi:10.3171/2011.3.SPINE101
  • 27 Yaylali I, Ju H, Yoo J. et al. Intraoperative neurophysiological monitoring in anterior lumbar interbody fusion surgery. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 2014; 31: 352-355. doi:10.1097/WNP.0000000000000073
  • 28 Jimenez JC, Sani S, Braverman B. et al. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. Journal of neurosurgery Spine 2005; 3: 92-97. doi:10.3171/spi.2005.3.2.0092
  • 29 Fan D, Schwartz DM, Vaccaro AR. et al. Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine 2002; 27: 2499-2502. doi:10.1097/01.BRS.0000031313.90883.29
  • 30 Ney JP, van der Goes DN, Nuwer MR. Does intraoperative neurophysiologic monitoring matter in noncomplex spine surgeries?. Neurology 2015; 85: 2151-2158. doi:10.1212/WNL.0000000000002076
  • 31 Ney JP, van der Goes DN, Watanabe JH. Cost-benefit analysis: intraoperative neurophysiological monitoring in spinal surgeries. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 2013; 30: 280-286 doi:10.1097/WNP.0b013e3182933d8f
  • 32 Scheufler KM, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. Journal of neurosurgery 2002; 96: 571-579. doi:10.3171/jns.2002.96.3.0571
  • 33 Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 2002; 19: 430-443
  • 34 Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 2002; 19: 409-415
  • 35 Deletis V, Seidel K, Sala F. et al. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. Journal of neurology, neurosurgery, and psychiatry 2018; 89: 754-761. doi:10.1136/jnnp-2017-317172
  • 36 Sala F, Palandri G, Basso E. et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 2006; 58: 1129-1143. discussion 1129–1143. doi:10.1227/01.NEU.0000215948.97195.58
  • 37 Bhagat S, Durst A, Grover H. et al. An evaluation of multimodal spinal cord monitoring in scoliosis surgery: a single centre experience of 354 operations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2015; 24: 1399-1407. doi:10.1007/s00586-015-3766-8
  • 38 Hilibrand AS, Schwartz DM, Sethuraman V. et al. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 2004; 86-A: 1248-1253
  • 39 Hsu B, Cree AK, Lagopoulos J. et al. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine 2008; 33: 1100-1106. doi:10.1097/BRS.0b013e31816f5f09
  • 40 Langeloo DD, Lelivelt A, Louis Journee H. et al. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 2003; 28: 1043-1050 doi:10.1097/01.BRS.0000061995.75709.78
  • 41 Lewis SJ, Gray R, Holmes LM. et al. Neurophysiological changes in deformity correction of adolescent idiopathic scoliosis with intraoperative skull-femoral traction. Spine 2011; 36: 1627-1638. doi:10.1097/BRS.0b013e318216124e
  • 42 Raynor BL, Padberg AM, Lenke LG. et al. Failure of Intraoperative Monitoring to Detect Postoperative Neurologic Deficits: A 25-year Experience in 12,375 Spinal Surgeries. Spine 2016; 41: 1387-1393. doi:10.1097/BRS.0000000000001531
  • 43 Schwartz DM, Auerbach JD, Dormans JP. et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 2007; 89: 2440-2449 doi:10.2106/JBJS.F.01476
  • 44 Bose B, Sestokas AK, Schwartz DM. Neurophysiological detection of iatrogenic C-5 nerve deficit during anterior cervical spinal surgery. Journal of neurosurgery Spine 2007; 6: 381-385 doi:10.3171/spi.2007.6.5.381
  • 45 Gunnarsson T, Krassioukov AV, Sarjeant R. et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine 2004; 29: 677-684