Laryngorhinootologie 2019; 98(10): 701-707
DOI: 10.1055/a-0964-8931
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Differentialdiagnostik sonographisch echoarmer Kopf-Halsläsionen

Differentiation of ultrasonographic hypoechoic head and neck lesions
Naglaa Mansour
1   University Hospital Freiburg Department of Otorhinolaryngology
2   Klinikum rechts der Isar der Technischen Universitat Munchen Klinik und Poliklinik der Hals-, Nasen- und Ohrenheilkunde
,
Lukas Bobenstetter
2   Klinikum rechts der Isar der Technischen Universitat Munchen Klinik und Poliklinik der Hals-, Nasen- und Ohrenheilkunde
,
Sonia Mansour
3   Zahnarztpraxis Prof. Dr. Dhom & Kollegen Zahnarztpraxis
,
Simone Graf
2   Klinikum rechts der Isar der Technischen Universitat Munchen Klinik und Poliklinik der Hals-, Nasen- und Ohrenheilkunde
,
Benedikt Hofauer
1   University Hospital Freiburg Department of Otorhinolaryngology
,
Andreas Knopf
1   University Hospital Freiburg Department of Otorhinolaryngology
› Author Affiliations
Further Information

Publication History

19 December 2018

27 June 2019

Publication Date:
02 August 2019 (online)

Zusammenfassung

Ziel Die Evaluation sonographisch echoarmer Läsionen (SEAL) der Kopf-Hals-Region zur Bestimmung der Entität und Planung der Operation.

Methoden Alle Patienten mit SEAL, die ein B-Bild-Ultraschall (US), eine farbkodierte Duplexsonographie (FKDS), einen kontrastverstärkten US (CEUS) und eine Kompressionselastographie (SE) erhalten haben und histologisch gesichert wurden, wurden eingeschlossen.

Ergebnisse 184 SEAL wurden eingeschlossen. Die Halslevel VIII, II und I waren mit 103, 40 und 21 Läsionen die am häufigsten betroffenen. Die Kohorte beinhaltete 40 Lymphknotenerkrankungen, 101 Speicheldrüsenerkrankungen, 31 zystische Läsionen und 12 andere, seltenere Entitäten. SEAL in Level II waren signifikant größer als in Level I und VIII (p < 0,001). In der FKDS zeigten SEAL in Level VI signifikant weniger bis keine Vaskularisation als in Level VIII (p < 0,01). Es gab keine Unterschiede in den B-Bild-Kriterien, in der SE oder im CEUS zwischen den einzelnen Halsleveln. Patienten mit zystischen Läsionen waren signifikant jünger als die mit Metastasen oder Warthintumoren (p = 0,026; 0,028). Pleomorphe Adenome waren signifikant kleiner als zystische Läsionen (p < 0,0006), Lymphome (p = 0,026), Metastasen (p = 0,0003) oder Warthintumore (p = 0,034). In der FKDS und im CEUS waren zystische Läsionen signifikant weniger bis gar nicht vaskularisiert und perfundiert als Lymphome (p = 0,014) und Warthintumore (p < 0,0001), während pleomorphe Adenome in der SE signifikant härter waren als zystische Läsionen (p = 0,0006).

Schlussfolgerung Die Bestimmung der Entität SEAL bleibt weiterhin schwierig. SE und CEUS bieten einen zusätzlichen Beitrag, Patienten zu selektieren, die eine intraoperative Schnellschnittuntersuchung mit möglicher Erweiterung der Operation benötigten und vom Einsatz des intraoperativen Nervenmonitorings profitierten.

Abstract

Aim To evaluate ultrasonographic hypoechoic lesions (HEL) of the head and neck region to predict their entity and plan surgery.

Methods Patients with HEL were included that were further analysed by B-mode ultrasound (US), colour-coded duplex sonography (CDS), contrast enhanced US (CEUS), and strain elastography (SE).

Results 184 patients were included. Level VIII, II, and I were affected frequently with 103, 40, and 21 HEL. The cohort comprised 40 lymph node disorders, 101 salivary gland diseases, 31 cystic lesions, and 12 other rarer entities. HEL in level II were significantly larger than in level I and VIII (p < 0.001). HEL in level VI showed less vascularisation than in level VIII in CDS (p < 0.01). There were no differences in B-mode criteria, SE, or CEUS between HEL in the different neck levels. Patients with cystic lesions were significantly younger than patients with metastases or Warthin’s tumours (p = 0.026, 0.028). Pleomorphic adenomas were significantly smaller than cystic lesions (p < 0.0006), lymphomas (p = 0.026), metastases (p = 0.0003), or Warthin’s tumours (p = 0.034). In CDS and CEUS, cystic lesions showed significantly less vascularisation and perfusion than lymphomas (p = 0.014) and Warthin’s tumours (p < 0.0001), while pleomorphic adenomas were stiffer than cystic lesions in SE (p = 0.0006).

Conclusion Predicting lesion’s entity is still challenging. The combination of different ultrasonographic criteria helped selecting patients that needed intraoperative fresh frozen section with possible extended surgery and profited from intraoperative nerve monitoring.

 
  • Literatur

  • 1 Gritzmann N. Sonography of the neck: current potentials and limitations. Ultraschall in Med 2005; 26 (03) 185-196
  • 2 Jecker P. Sonographic differential diagnosis of cervical masses. HNO 2011; 59 (02) 139-144
  • 3 Robbins KT, Medina JE, Wolfe GT. et al. Standardizing neck dissection terminology. Official report of the Academy’s Committee for Head and Neck Surgery and Oncology. Arch Otolaryngol Head Neck Surg 1991; 117 (06) 601-605
  • 4 Gregoire V, Ang K, Budach W. et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014; 110 (01) 172-181
  • 5 Riishede I, Ewertsen C, Carlsen J. et al. Strain Elastography for Prediction of Malignancy in Soft Tissue Tumours--Preliminary Results. Ultraschall in Med 2015; 36 (04) 369-374
  • 6 Wojcinski S, Farrokh A, Weber S. et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS(R)-US classification system with sonoelastography. Ultraschall in Med 2010; 31 (05) 484-491
  • 7 Hinz T, Hoeller T, Wenzel J. et al. Real-time tissue elastography as promising diagnostic tool for diagnosis of lymph node metastases in patients with malignant melanoma: a prospective single-center experience. Dermatology 2013; 226 (01) 81-90
  • 8 Rubaltelli L, Beltrame V, Scagliori E. et al. Potential use of contrast-enhanced ultrasound (CEUS) in the detection of metastatic superficial lymph nodes in melanoma patients. Ultraschall in Med 2014; 35 (01) 67-71
  • 9 D’Onofrio M, Biagioli E, Gerardi C. et al. Diagnostic performance of contrast-enhanced ultrasound (CEUS) and contrast-enhanced endoscopic ultrasound (ECEUS) for the differentiation of pancreatic lesions: a systematic review and meta-analysis. Ultraschall Med 2014; 35 (06) 515-521
  • 10 Mansour N, Bas M, Stock KF. et al. Multimodal Ultrasonographic Pathway of Parotid Gland Lesions. Ultraschall in Med; 2015
  • 11 Knopf A, Mansour N, Chaker A. et al. Multimodal ultrasonographic characterisation of parotid gland lesions--a pilot study. European journal of radiology 2012; 81 (11) 3300-3305
  • 12 Mansour N, Stock KF, Chaker A. et al. Evaluation of parotid gland lesions with standard ultrasound, color duplex sonography, sonoelastography, and acoustic radiation force impulse imaging – a pilot study. Ultraschall in Med 2012; 33 (03) 283-288
  • 13 Sniezek JC. Head and neck ultrasound: why now?. Otolaryngol Clin North Am 2010; 43 (06) 1143-1147
  • 14 Knopf A, Lahmer T, Chaker A. et al. Head and neck sarcoidosis, from wait and see to tumor necrosis factor alpha therapy: a pilot study. Head Neck 2013; 35 (05) 715-719
  • 15 Carlsen J, Ewertsen C, Sletting S. et al. Ultrasound Elastography in Breast Cancer Diagnosis. Ultraschall in Med 2015; 36 (06) 550-565
  • 16 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34 (02) 169-184
  • 17 Lan D, Qu HC, Li N. et al. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis. PLoS One 2016; 11 (05) e0155857
  • 18 Strassen U, Hofauer B, Matsuba Y. et al. Bronchogenic cancer: It still exists. Laryngoscope; 2015
  • 19 Ying L, Lin X, Xie ZL. et al. Clinical utility of endoscopic ultrasound elastography for identification of malignant pancreatic masses: a meta-analysis. J Gastroenterol Hepatol 2013; 28 (09) 1434-1443
  • 20 Richards PS, Peacock TE. The role of ultrasound in the detection of cervical lymph node metastases in clinically N0 squamous cell carcinoma of the head and neck. Cancer Imaging 2007; 7: 167-178
  • 21 Chan JM, Shin LK, Jeffrey RB. Ultrasonography of abnormal neck lymph nodes. Ultrasound Q 2007; 23 (01) 47-54
  • 22 Kumral TL, Yildirim G, Onol SD. et al. Real-time ultrasound elastography for the differentiation of malignant and benign masses in the head and neck. J Craniofac Surg 2014; 25 (06) 1971-1974
  • 23 Lyshchik A, Higashi T, Asato R. et al. Cervical lymph node metastases: diagnosis at sonoelastography--initial experience. Radiology 2007; 243 (01) 258-267
  • 24 Alam F, Naito K, Horiguchi J. et al. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. AJR Am J Roentgenol 2008; 191 (02) 604-610
  • 25 Zenk J, Bozzato A, Hornung J. et al. Neck lymph nodes: prediction by computer-assisted contrast medium analysis?. Ultrasound Med Biol 2007; 33 (02) 246-253