Der Nuklearmediziner 2019; 42(03): 220-224
DOI: 10.1055/a-0916-6697
Benigne Schilddrüsenknoten – Update 2019
© Georg Thieme Verlag KG Stuttgart · New York

Schwerpunktprogramm der Deutschen Forschungsgemeinschaft SPP1629 „THYROID TRANS ACT“ – Neue Aspekte in der Schilddrüsenforschung

Priority program “THYROID TRANS ACT“ (SPP1629) of the German Research Foundation – New Aspects in Thyroid Research
Klaudia Brix*
1   Jacobs University Bremen, Department of Life Sciences and Chemistry, Bremen
,
Heike Biebermann*
2   Charité Universitätsmedizin Berlin, Institut für Experimentelle Pädiatrische Endokrinologie, Berlin
,
Dagmar Führer*
3   Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Zentrallabor − Bereich Forschung und Lehre, Universitätsklinikum Essen (AöR), Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
03 September 2019 (online)

Zusammenfassung

THYROID TRANS ACT ist ein deutschlandweiter Forschungsverbund, der sich der Frage widmet: „Wie ist die gesunde Schilddrüsenfunktion definiert?“. In THYROID TRANS ACT arbeiten grundlagenwissenschaftlich, translational sowie klinisch orientierte Schilddrüsenforscher aus Deutschland interdisziplinär zusammen. Das langfristige Ziel ist es, neue Therapiekonzepte für Schilddrüsenpathologien und Schilddrüsenhormonabhängige Erkrankungen zu entwickeln.

Abstract

THYROID TRANS ACT is a Germany-wide research consortium asking “What defines healthy and diseased thyroid function?” The interdisciplinary research groups of THYROID TRANS ACT cooperate on basic science, translational and clinical aspects of thyroidology. The long-term goal is to develop novel therapeutic concepts addressing thyroid pathologies and thyroid hormone-related disorders.

* Koordinatorinnen des SPP1629 „THYROID TRANS ACT“


 
  • Referenzen

  • 1 Brix K, Fuhrer D, Biebermann H. Molecules important for thyroid hormone synthesis and action - known facts and future perspectives. Thyroid research 2011; 4 (Suppl. 01) S9
  • 2 Fuhrer D, Brix K, Biebermann H. Thyroid hormone action beyond classical concepts. The priority programme „Thyroid Trans Act“ (SPP 1629) of the German Research Foundation. Deutsche medizinische Wochenschrift (1946) 2014; 139: 492-496
  • 3 Fuhrer D, Brix K, Biebermann H. Understanding the Healthy Thyroid State in 2015. European thyroid journal 2015; 4: 1-8
  • 4 Scanlan TS, Suchland KL, Hart ME. et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nature medicine 2004; 10: 638-642
  • 5 Kohrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocrine reviews 2019; 40: 602-630
  • 6 Regard JB, Kataoka H, Cano DA. et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. The Journal of clinical investigation 2007; 117: 4034-4043
  • 7 Dinter J, Muhlhaus J, Jacobi SF. et al. 3-iodothyronamine differentially modulates alpha-2A-adrenergic receptor-mediated signaling. Journal of molecular endocrinology 2015; 54: 205-216
  • 8 Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?. Frontiers in endocrinology 2017; 8: 198
  • 9 Lehmphul I, Brabant G, Wallaschofski H. et al. Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid: official journal of the American Thyroid Association 2014; 24: 1350-1360
  • 10 Pietzner M, Lehmphul I, Friedrich N. et al. Translating pharmacological findings from hypothyroid rodents to euthyroid humans: is there a functional role of endogenous 3,5-T2?. Thyroid: official journal of the American Thyroid Association 2015; 25: 188-197
  • 11 Ittermann T, Lorbeer R, Dorr M. et al. High levels of thyroid-stimulating hormone are associated with aortic wall thickness in the general population. European radiology 2016; 26: 4490-4496
  • 12 Ittermann T, Dorr M, Volzke H. et al. High serum thyrotropin levels are associated with retinal arteriolar narrowing in the general population. Thyroid : official journal of the American Thyroid Association 2014; 24: 1473-1478
  • 13 Pietzner M, Homuth G, Budde K. et al. Urine Metabolomics by (1)H-NMR Spectroscopy Indicates Associations between Serum 3,5-T2 Concentrations and Intermediary Metabolism in Euthyroid Humans. European thyroid journal 2015; 4: 92-100
  • 14 Langouche L, Lehmphul I, Perre SV. et al. Circulating 3-T1AM and 3,5-T2 in Critically Ill Patients: A Cross-Sectional Observational Study. Thyroid: official journal of the American Thyroid Association 2016; 26: 1674-1680
  • 15 Richards K, Rijntjes E, Rathmann D. et al. Avoiding the pitfalls when quantifying thyroid hormones and their metabolites using mass spectrometric methods: The role of quality assurance. Molecular and cellular endocrinology 2017; 458: 44-56
  • 16 Kohrle J. Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets. Methods in molecular biology (Clifton, NJ) 2018; 1801: 85-104
  • 17 Pietzner M, Kacprowski T, Friedrich N. Empowering thyroid hormone research in human subjects using OMICs technologies. The Journal of endocrinology 2018; 238: R13-r29
  • 18 Pietzner M, Engelmann B, Kacprowski T. et al. Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model. BMC medicine 2017; 15: 6
  • 19 Dumitrescu AM, Liao XH, Best TB. et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. American journal of human genetics 2004; 74: 168-175
  • 20 Friesema EC, Grueters A, Biebermann H. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet (London, England) 2004; 364: 1435-1437
  • 21 Trajkovic M, Visser TJ, Mittag J. et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. The Journal of clinical investigation 2007; 117: 627-635
  • 22 Wirth EK, Roth S, Blechschmidt C. et al. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009; 29: 9439-9449
  • 23 Mayerl S, Muller J, Bauer R. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. The Journal of clinical investigation 2014; 124: 1987-1999
  • 24 Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochimica et biophysica acta 2013; 1830: 3974-3978
  • 25 Groeneweg S, Peeters RP, Visser TJ. et al. Triiodothyroacetic acid in health and disease. The Journal of endocrinology 2017; 234: R99-r121
  • 26 Mayerl S, Visser TJ, Darras VM. et al. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 2012; 153: 1528-1537
  • 27 Horn S, Kersseboom S, Mayerl S. et al. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 2013; 154: 968-979
  • 28 Muller J, Mayerl S, Visser TJ. et al. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 2014; 155: 315-325
  • 29 Engels K, Rakov H, Zwanziger D. et al. Differences in Mouse Hepatic Thyroid Hormone Transporter Expression with Age and Hyperthyroidism. European thyroid journal 2015; 4: 81-86
  • 30 Wirth EK, Rijntjes E, Meyer F. et al. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase. European thyroid journal 2015; 4: 87-91
  • 31 Weber J, McInnes J, Kizilirmak C. et al. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland. European journal of cell biology 2017; 96: 440-456
  • 32 Badziong J, Ting S, Synoracki S. et al. Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism. European journal of endocrinology 2017; 177: 243-250
  • 33 Sharlin DS, Ng L, Verrey F. et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Scientific reports 2018; 8: 4403
  • 34 Mayerl S, Schmidt M, Doycheva D. et al. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration. Stem cell reports 2018; 10: 1959-1974
  • 35 Kleinau G, Schweizer U, Kinne A. et al. Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid research 2011; 4 (Suppl. 01) S4
  • 36 Kinne A, Schulein R, Krause G. Primary and secondary thyroid hormone transporters. Thyroid research 2011; 4 (Suppl. 01) S7
  • 37 Braun D, Kim TD, le Coutre P. et al. Tyrosine kinase inhibitors noncompetitively inhibit MCT8-mediated iodothyronine transport. The Journal of clinical endocrinology and metabolism 2012; 97: E100-105
  • 38 Braun D, Lelios I, Krause G. et al. Histidines in potential substrate recognition sites affect thyroid hormone transport by monocarboxylate transporter 8 (MCT8). Endocrinology 2013; 154: 2553-2561
  • 39 Hinz KM, Meyer K, Kinne A. et al. Structural insights into thyroid hormone transport mechanisms of the L-type amino acid transporter 2. Molecular endocrinology (Baltimore, Md) 2015; 29: 933-942
  • 40 Kinne A, Wittner M, Wirth EK. et al. Involvement of the L-Type Amino Acid Transporter Lat2 in the Transport of 3,3'-Diiodothyronine across the Plasma Membrane. European thyroid journal 2015; 4: 42-50
  • 41 Johannes J, Jayarama-Naidu R, Meyer F. et al. Silychristin, a Flavonolignan Derived From the Milk Thistle, Is a Potent Inhibitor of the Thyroid Hormone Transporter MCT8. Endocrinology 2016; 157: 1694-1701
  • 42 Johannes J, Braun D, Kinne A. et al. Few Amino Acid Exchanges Expand the Substrate Spectrum of Monocarboxylate Transporter 10. Molecular endocrinology (Baltimore, Md) 2016; 30: 796-808
  • 43 Zwanziger D, Schmidt M, Fischer J. et al. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity. Molecular and cellular endocrinology 2016; 434: 278-287
  • 44 Hinz KM, Neef D, Rutz C. et al. Molecular features of the L-type amino acid transporter 2 determine different import and export profiles for thyroid hormones and amino acids. Molecular and cellular endocrinology 2017; 443: 163-174
  • 45 Protze J, Braun D, Hinz KM. et al. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cellular and molecular life sciences : CMLS 2017; 74: 2299-2318
  • 46 Krause G, Hinz KM. Thyroid hormone transport across L-type amino acid transporters: What can molecular modelling tell us?. Molecular and cellular endocrinology 2017; 458: 68-75
  • 47 Fischer J, Kleinau G, Muller A. et al. Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. Journal of molecular endocrinology 2015; 54: 39-50
  • 48 Braun D, Schweizer U. Efficient Activation of Pathogenic DeltaPhe501 Mutation in Monocarboxylate Transporter 8 by Chemical and Pharmacological Chaperones. Endocrinology 2015; 156: 4720-4730
  • 49 Braun D, Schweizer U. The Chemical Chaperone Phenylbutyrate Rescues MCT8 Mutations Associated With Milder Phenotypes in Patients With Allan-Herndon-Dudley Syndrome. Endocrinology 2017; 158: 678-691
  • 50 Groeneweg S, van den Berge A, Meima ME. et al. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology 2018; 159: 1290-1302
  • 51 Pranke I, Golec A, Hinzpeter A. et al. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Frontiers in pharmacology 2019; 10: 121
  • 52 Roth S, Kinne A, Schweizer U. The tricyclic antidepressant desipramine inhibits T3 import into primary neurons. Neuroscience letters 2010; 478: 5-8
  • 53 Schweizer U, Towell H, Vit A. et al. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Molecular and cellular endocrinology 2017; 458: 57-67
  • 54 Bernal J, Morte B. Thyroid hormone receptor activity in the absence of ligand: physiological and developmental implications. Biochimica et biophysica acta 2013; 1830: 3893-3899
  • 55 Hones GS, Rakov H, Logan J. et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proceedings of the National Academy of Sciences of the United States of America 2017; 114: E11323-e11332
  • 56 Mittag J, Lyons DJ, Sallstrom J. et al. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. The Journal of clinical investigation 2013; 123: 509-516
  • 57 Dudazy-Gralla S, Nordstrom K, Hofmann PJ. et al. Identification of thyroid hormone response elements in vivo using mice expressing a tagged thyroid hormone receptor alpha1. Bioscience reports 2013; 33: e00027
  • 58 Warner A, Rahman A, Solsjo P. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor alpha1. Proceedings of the National Academy of Sciences of the United States of America 2013; 110: 16241-16246
  • 59 Gachkar S, Nock S, Geissler C. et al. Aortic Effects of Thyroid Hormone in Male Mice. Journal of molecular endocrinology 2019; DOI: 10.1530/jme-18-0217.
  • 60 Godoy GA, Korevaar TI, Peeters RP. et al. Maternal thyroid hormones during pregnancy, childhood adiposity and cardiovascular risk factors: the Generation R Study. Clinical endocrinology 2014; 81: 117-125
  • 61 Johnson JA, Williams P, Lu Z. et al. Fetuses of Mothers with Thyroid Disease May Be at Higher Risk of Developing Supraventricular Tachycardia. American journal of perinatology 2015; 32: 1240-1246
  • 62 Rytter D, Andersen SL, Bech BH. et al. Maternal thyroid function in pregnancy may program offspring blood pressure, but not adiposity at 20 y of age. Pediatric research 2016; 80: 7-13
  • 63 Mittag J, Davis B, Vujovic M. et al. Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1. Endocrinology 2010; 151: 2388-2395
  • 64 Finan B, Clemmensen C, Zhu Z. et al. Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell 2016; 167: 843-857.e814