Sportphysio 2019; 07(02): 74-80
DOI: 10.1055/a-0863-0065
Focus
Vertiefung
© Georg Thieme Verlag KG Stuttgart · New York

Verletzungsvorhersage und Risikoscreening bei Verletzungen des vorderen Kreuzbandes

Alli Gokeler
,
Anne Benjaminse
Further Information

Publication History

Publication Date:
03 May 2019 (online)

Viele Sportler erleiden Verletzungen des vorderen Kreuzbands – trotz vieler Anstrengungen des Betreuerteams, gefährdete Sportler zu identifizieren und mit entsprechenden Maßnahmen das individuelle Verletzungsrisiko zu senken. Neueste Untersuchungen lenken den Blick auf Kontextfaktoren, die bisher kaum oder nicht in ausreichendem Maß berücksichtigt wurden – ein hoffnungsvoller Ansatz.

 
  • Literatur

  • 1 Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: National collegiate athletic association injury surveillance system data update (2004–2005 through 2012–2013). Clin J Sport Med. 2016 doi:10.1097/JSM.0000000000000290
  • 2 Sadoghi P, von Keudell A, Vavken P. Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Jt Surg Am Vol 2012; 94 (09) 769-776
  • 3 Alentorn-Geli E, Mendiguchia J, Samuelsson K. et al. Prevention of anterior cruciate ligament injuries in sports-Part I: Systematic review of risk factors in male athletes. Knee Surg Sport Traumatol Arthrosc 2014; 22 (01) 3-15
  • 4 Soligard T, Myklebust G, Steffen K. et al. Comprehensive warm-up programme to prevent injuries in young female footballers: Cluster randomised controlled trial. BMJ 2008; 337: 2469
  • 5 Silvers-Granelli HJ, Bizzini M, Arundale A. et al. Does the FIFA 11 + Injury Prevention Program reduce the incidence of ACL injury in male soccer players?. Clin Orthop Relat Res. 2017 doi:10.1007/s11999–017–5342–5
  • 6 Krosshaug T, Nakamae A, Boden BP. et al. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am J Sports Med. 2007 35. (3), 9p
  • 7 Koga H, Nakamae A, Shima Y. et al. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sport Med 2010; 38 (11) 2218-2225
  • 8 Monfort SM, Comstock RD, Collins CL. et al. Association between ball-handling versus defending actions and acute noncontact lower extremity injuries in high school basketball and soccer. Am J Sports Med. 2015; 43 (04) 802-807
  • 9 Walden M, Krosshaug T, Bjorneboe J. et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br J Sport Med 2015; 49 (22) 1452-1460
  • 10 Olsen OE, Myklebust G, Engebretsen L. et al. Injury pattern in youth team handball: A comparison of two prospective registration methods. Scand J Med Sci Sport 2006; 16 (06) 426-432
  • 11 Olsen OE, Myklebust G, Engebretsen L. et al. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am J Sports Med. 2004 doi:10.1177/0363546503261724
  • 12 Hopkins JT, Brown TN, Christensen L. et al. Deficits in peroneal latency and electromechanical delay in patients with functional ankle instability. J Orthop Res 2009; 27 (12) 1541-1546
  • 13 Vacek PM, Slauterbeck JR, Tourville TW. et al. Multivariate analysis of the risk factors for first-time noncontact ACL injury in high school and college athletes: A prospective cohort study with a nested, matched case-control analysis. Am J Sport Med 2016; 44 (06) 1492-1501
  • 14 Smith HC, Vacek P, Johnson RJ. et al. Risk factors for anterior cruciate ligament injury: A review of the literature – part 1: Neuromuscular and anatomic risk. Sports Health 2012; 4 (01) 69-78
  • 15 Smith HC, Vacek P, Johnson RJ. et al. Risk factors for anterior cruciate ligament injury: A review of the literature – part 2: Hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health 2012; 4 (02) 155-161
  • 16 Zebis MK, Andersen LL, Brandt M. et al. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: A randomised controlled trial. Br J Sport Med 2016; 50 (09) 552-557
  • 17 Hewett TE, Myer GD, Ford KR. et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sport Med 2005; 33 (04) 492-501
  • 18 Padua DA, Marshall SW, Boling MC. et al. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am J Sport Med 2009; 37 (10) 1996-2002
  • 19 Rafeeuddin R, Sharir R, Staes F. et al. Mapping current research trends on neuromuscular risk factors of non-contact ACL injury. Phys Ther Sport 2016; 22: 101-113 doi:10.1016/j.ptsp.2016.06.004
  • 20 Bahr R. Why screening tests to predict injury do not work—and probably never will…: a critical review. Br J Sports Med 2016; 50 (13) 776-780
  • 21 Shrier I, Verhagen E, Stovitz SD. Screening tests for ACL injury: Letter to the editor. Am J Sports Med 2016; 44 (06) NP26-NP26
  • 22 Hewett TE, Ford KR, Myer GD. Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sport Med 2006; 34 (03) 490-498
  • 23 Bittencourt NF, Meeuwisse WH, Mendonca LD. et al. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br J Sport Med; 2016 doi:10.1136/bjsports-2015–095850
  • 24 Bahr R, Krosshaug T. Understanding injury mechanisms: A key component of preventing injuries in sport. Br J Sport Med 2005; 39 (06) 324-329
  • 25 Sugimoto D, Myer GD, Foss KD. et al. Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: Meta-analysis and subgroup analysis. Br J Sport Med 2015; 49 (05) 282-289
  • 26 Grooms DR, Onate JA. Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health 2016; 8 (02) 149-152
  • 27 Bolling C, van Mechelen W, Pasman HR. et al. Context matters: Revisiting the first step of the „Sequence of Prevention” of sports injuries. Sport Med 2018; 48 (10) 1-8
  • 28 Ivarsson A, Johnson U, Karlsson J. et al. Elite female footballers’ stories of sociocultural factors, emotions, and behaviours prior to anterior cruciate ligament injury. Int J Sport Exerc Psychol 2018; 0 (00) 1-17
  • 29 Vestberg T, Reinebo G, Maurex L. et al. Core executive functions are associated with success in young elite soccer players. PLoS One 2017; 12 (02) 1-13
  • 30 McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc 2009; 41 (08) 1661-1672
  • 31 Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: Implications for anterior cruciate ligament injury risk and prevention. Am J Sport Med 2016; 44 (09) 2347-2353
  • 32 Swanik CBuz. Brains and sprains: The brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train 2015; 50 (10) 1100-1102
  • 33 Diamond A. Executive functions. Annu Rev Psychol 2013; 64 (01) 135-168
  • 34 Myklebust G, Engebretsen L, Braekken IH. et al. Prevention of anterior cruciate ligament injuries in female team handball players: A prospective intervention study over three seasons. Clin J Sport Med 2003; 13 (02) 71-78
  • 35 Reichenbach A, Franklin DW, Zatka-Haas P. et al. A dedicated binding mechanism for the visual control of movement. Curr Biol 2014; 24 (07) 780-785
  • 36 Benjaminse A, Otten E. ACL injury prevention, more effective with a different way of motor learning?. Knee Surgery, Sport Traumatol Arthrosc 2011; 19 (04) 622-627
  • 37 Jamison ST, McNally MP, Schmitt LC. et al. The effects of core muscle activation on dynamic trunk position and knee abduction moments: Implications for ACL injury. J Biomech. 2013 doi:10.1016/j.jbiomech.2013.06.021
  • 38 Millikan N, Grooms DR, Hoffman B. The development and reliability of four clinical neurocognitive single-leg hop tests: Implications for return to activity decision making. J Sport Rehabil. 11/2018; 1-26 doi:10.1123/jsr.2018–0037