Der Nuklearmediziner 2019; 42(01): 68-75
DOI: 10.1055/a-0851-1511
Theranostik
© Georg Thieme Verlag KG Stuttgart · New York

Neue Entwicklungen auf dem Gebiet der Theranostik

New developments in the field of theranostics
Wolfgang Weber
Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, München
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2019 (online)

Zusammenfassung

Diese Übersichtsarbeit stellt neue Radiopharmaka für die Tumordiagnostik und -therapie vor, die erfolgversprechende präklinische Ergebnisse gezeigt haben und aktuell in klinischen Studien untersucht werden. Dazu gehören mehrere radioaktiv markierte Antikörper wie 131I-Omburtamab, ein gegen das B7-H3-Protein gerichteter Antikörper, der zur Therapie von Neuroblastomen eingesetzt wird; HuMab-5B1, ein 89Zr/177Lu markierter Antikörper zur Therapie von CA19-9 exprimierenden Tumoren und 177Lu-Lilotomab, ein Antikörper gegen das Oberflächenantigen CD37 für die Therapie von B-Zell-Lymphomen. Weitere Beispiele sind der Neurotensin Rezeptor Ligand 111In/177Lu-3B-227 für die Diagnostik und Therapie von verschiedenen Tumorerkrankungen, insbesondere Adenokarzinomen des Pankreas und der Phospholipidether 131I/124I-CLR1404, der wahrscheinlich aufgrund einer veränderten Membranstruktur in verschiedenen Tumorzelltypen angereichert wird. Neben diesen, von Tumorzellen exprimierten Zielstrukturen wird auch das Fibroblasten Aktivierungs Protein (FAP), das im Tumorstroma gebildet wird, als Zielstruktur für die Bildgebung und Therapie eingesetzt (68Ga/90Y-FAPI-04). Diese neuen Radiopharmaka haben das Potenzial für die Therapie einer ganzen Reihe von Tumorerkrankungen und ihre Effektivität sollte in systematischen Studien untersucht werden.

Abstract

This review discusses new radiopharmaceuticals for the diagnosis and therapy of malignant tumors that have shown promising results in preclinical studies and are currently undergoing initial clinical studies. These include several radiolabeled antibodies, such as 131I-Omburtamab, a monoclonal antibody directed against the B7-H3 protein on the surface of Neuroblastoma cells, HuMab-5B1, a 89Zr/177Lu-labeled monoclonal antibody for the treatment of CA19-9 expressing malignancies, and 177Lu-Lilotomab, a CD37 antibody for the treatment of B-cell lymphomas. Other examples include the neurotensin receptor ligand 111In/177Lu-3B-227 for imaging and therapy of several malignancies and specifically adenocarcinomas of the pancreas. The Phospholipidether 131I/124I-CLR1404 has been shown to be accumulate in a variety of malignancies, probably because of an altered membrane structure of cancer cells. In addition to these ligands that target molecules expressed by cancer cells there are also targets for radionuclide therapy in the tumor stroma. Fibroblast activation protein (FAP) is expressed by fibroblasts in the tumor stroma and has been successfully used as ta target for imaging a variety of malignancies with 68Ga-FAPI-04. In addition, 90Y-FAPI-04 has been used for the treatment of selected patients with FAP positive tumor stroma. In conclusion, there is a variety of new radiopharmaceuticals for theranostic applications. Further systematic testing of these compounds in clinical trials is warranted.

 
  • Literatur

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34
  • 2 Parker C, Nilsson S, Heinrich D. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369: 213-223
  • 3 Hofman MS, Violet J, Hicks RJ. et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018; 19: 825-833
  • 4 Heck MM, Tauber R, Schwaiger S. et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with (177)Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur Urol 2018; DOI: 10.1016/j.eururo.2018.11.016.
  • 5 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376: 125-135
  • 6 Janakiram M, Shah UA, Liu W. et al. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276: 26-39
  • 7 Cousin S, Italiano A. Molecular Pathways: Immune Checkpoint Antibodies and their Toxicities. Clin Cancer Res 2016; 22: 4550-4555
  • 8 Modak S, Kramer K, Gultekin SH. et al. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res 2001; 61: 4048-4054
  • 9 Souweidane MM, Kramer K, Pandit-Taskar N. et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol 2018; 19: 1040-1050
  • 10 Kramer K, Kushner BH, Modak S. et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol 2010; 97: 409-18
  • 11 Kramer K, Kushner BH, Modak S. et al. A curative approach to central nervous system metastases of neuroblastoma. J Clin Oncol 2017; 35: 10545 (suppl): abstract
  • 12 Pinto NR, Applebaum MA, Volchenboum SL. et al. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J Clin Oncol 2015; 33: 3008-3017
  • 13 Kramer K, Pandit-Taskar N, Zanzonico P. et al. Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. J Neurooncol 2015; 123: 245-249
  • 14 Stallard J. FDA Grants Breakthrough Therapy Designation to Omburtamab for Metastatic Neuroblastoma. 2018 https://www.mskcc.org/blog/fda-grants-breakthrough-therapy-designation-burtomab-metastatic-neuroblastoma , December 27, 2018
  • 15 Scara S, Bottoni P, Scatena R. CA 19-9: Biochemical and Clinical Aspects. Adv Exp Med Biol 2015; 867: 247-260
  • 16 Kim S, Thiessen PA, Bolton EE. et al. PubChem Substance and Compound databases. Nucleic Acids Res 2016; 44: D1202-1213
  • 17 Kannagi R, Ohmori K, Chen GY. et al. Sialylated and sulfated carbohydrate ligands for selectins and siglecs: involvement in traffic and homing of human memory T and B lymphocytes. Adv Exp Med Biol 2011; 705: 549-569
  • 18 Miyazaki K, Ohmori K, Izawa M. et al. Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res 2004; 64: 4498-4505
  • 19 Haab BB, Huang Y, Balasenthil S. et al. Definitive Characterization of CA 19-9 in Resectable Pancreatic Cancer Using a Reference Set of Serum and Plasma Specimens. PLoS One 2015; 10: e0139049
  • 20 Viola-Villegas NT, Rice SL, Carlin S. et al. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J Nucl Med 2013; 54: 1876-1882
  • 21 Sawada R, Sun SM, Wu X. et al. Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clin Cancer Res 2011; 17: 1024-1032
  • 22 Lohrmann C, O'Reilly 2 E, ODonoghue J. et al. First-in-Human Study of 89Zr-DFO-HuMab-5B1 (MVT-2163) PET/CT imaging with and without HuMab-5B1 (MVT-5873) in patients with pancreatic cancer and other CA 19-9 positive malignancies. J Nucl Med 2017; 58 (Suppl. 01) 385
  • 23 O'Reilly E, Lohrmann C, O'Donoghue J. et al. Phase I dose escalation study of 177Lu-HuMab-5B1 (MVT-1075) in combination with MVT-5873 as radioimmunotherapy (RIT) in subjects with relapsed/refractory pancreatic cancer or other CA19-9+ malignancies. Cancer Res 2018; 78 (Suppl. 13) Abstract Nr CT140
  • 24 Repetto-Llamazares AH, Larsen RH, Patzke S. et al. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLoS One 2015; 10: e0128816
  • 25 Jiang X, Zhang J, Huang Y. Tetraspanins in cell migration. Cell Adh Migr 2015; 9: 406-415
  • 26 Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015; 6: 91
  • 27 Smeland E, Funderud S, Ruud E. et al. Characterization of two murine monoclonal antibodies reactive with human B cells. Their use in a high-yield, high-purity method for isolation of B cells and utilization of such cells in an assay for B-cell stimulating factor. Scand J Immunol 1985; 21: 205-214
  • 28 Repetto-Llamazares AH, Larsen RH, Mollatt C. et al. Biodistribution and dosimetry of (177)Lu-tetulomab, a new radioimmunoconjugate for treatment of non-Hodgkin lymphoma. Curr Radiopharm 2013; 6: 20-27
  • 29 Repetto-Llamazares AHV, Malenge MM, O'Shea A. et al. Combination of (177) Lu-lilotomab with rituximab significantly improves the therapeutic outcome in preclinical models of non-Hodgkin's lymphoma. Eur J Haematol 2018; 101: 522-531
  • 30 Blakkisrud J, Londalen A, Martinsen AC. et al. Tumor-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with the Anti-CD37 Antibody Radionuclide Conjugate 177Lu-Lilotomab Satetraxetan. J Nucl Med 2017; 58: 48-54
  • 31 Stokke C, Blakkisrud J, Londalen A. et al. Pre-dosing with lilotomab prior to therapy with (177)Lu-lilotomab satetraxetan significantly increases the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients. Eur J Nucl Med Mol Imaging 2018; 45: 1233-1241
  • 32 Kolstad A, Madsbu U, Beasley M. et al. LYMRIT 37-01: A Phase I/II Study of 177lu-Lilotomab Satetraxetan (Betalutin®) Antibody-Radionuclide-Conjugate (ARC) for the Treatment of Relapsed Non-Hodgkin's Lymphoma (NHL) – Analysis with 6-Month Follow-up. ASH. San Diego: 2018 abstract 2879
  • 33 Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015; 57: 130-46
  • 34 Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327: 46-50
  • 35 Pereira PMR, Sharma SK, Carter LM. et al. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun 2018; 9: 5137
  • 36 Weichert JP, Clark PA, Kandela IK. et al. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 2014; 6: 240ra75
  • 37 Grudzinski JJ, Titz B, Kozak K. et al. A phase 1 study of 131I-CLR1404 in patients with relapsed or refractory advanced solid tumors: dosimetry, biodistribution, pharmacokinetics, and safety. PLoS One 2014; 9: e111652
  • 38 Baiu DC, Marsh IR, Boruch AE. et al. Targeted Molecular Radiotherapy of Pediatric Solid Tumors Using a Radioiodinated Alkyl-Phospholipid Ether Analog. J Nucl Med 2018; 59: 244-250
  • 39 Vallabhajosula S, Goldsmith SJ, Hamacher KA. et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J Nucl Med 2005; 46: 850-858
  • 40 St-Gelais F, Jomphe C, Trudeau LE. The role of neurotensin in central nervous system pathophysiology: what is the evidence?. J Psychiatry Neurosci 2006; 31: 229-245
  • 41 Osadchii OE. Emerging role of neurotensin in regulation of the cardiovascular system. Eur J Pharmacol 2015; 762: 184-192
  • 42 Andersen JL, Schroder TJ, Christensen S. et al. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex. Acta Crystallogr D Biol Crystallogr 2014; 70: 451-460
  • 43 Qiu S, Pellino G, Fiorentino F. et al. A Review of the Role of Neurotensin and Its Receptors in Colorectal Cancer. Gastroenterol Res Pract 2017; 2017: 6456257
  • 44 Hou T, Shi L, Wang J. et al. Label-free cell phenotypic profiling and pathway deconvolution of neurotensin receptor-1. Pharmacol Res 2016; 108: 39-45
  • 45 Korner M, Waser B, Strobel O. et al. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res 2015; 5: 17
  • 46 Reubi JC, Waser B, Macke H. et al. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers. J Nucl Med 2017; 58: 300-306
  • 47 Schulz J, Rohracker M, Stiebler M. et al. Comparative Evaluation of the Biodistribution Profiles of a Series of Nonpeptidic Neurotensin Receptor-1 Antagonists Reveals a Promising Candidate for Theranostic Applications. J Nucl Med 2016; 57: 1120-1123
  • 48 Schulz J, Rohracker M, Stiebler M. et al. Proof of Therapeutic Efficacy of a (177)Lu-Labeled Neurotensin Receptor 1 Antagonist in a Colon Carcinoma Xenograft Model. J Nucl Med 2017; 58: 936-941
  • 49 Baum RP, Singh A, Schuchardt C. et al. (177)Lu-3BP-227 for Neurotensin Receptor 1-Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results. J Nucl Med 2018; 59: 809-814
  • 50 Hamson EJ, Keane FM, Tholen S. et al. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl 2014; 8: 454-463
  • 51 Jiang GM, Xu W, Du J. et al. The application of the fibroblast activation protein alpha-targeted immunotherapy strategy. Oncotarget 2016; 7: 33472-33482
  • 52 Pure E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 2018; 37: 4343-4357
  • 53 Lee HO, Mullins SR, Franco-Barraza J. et al. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 2011; 11: 245
  • 54 Shi M, Yu DH, Chen Y. et al. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 2012; 18: 840-846
  • 55 Lindner T, Loktev A, Altmann A. et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med 2018; 59: 1415-1422
  • 56 Welt S, Divgi CR, Scott AM. et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 1994; 12: 1193-1203
  • 57 Loktev A, Lindner T, Mier W. et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 2018; 59: 1423-1429
  • 58 Giesel F, Kratochwil C, Lindner T. et al. FAPI-PET/CT: biodistribution and preliminary dosimetry estimate of two DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 2018; DOI: 10.2967/jnumed.118.215913.