Z Geburtshilfe Neonatol 2019; 223(03): 179-183
DOI: 10.1055/a-0850-0650
Kasuistik
© Georg Thieme Verlag KG Stuttgart · New York

Mütterliches Malignom in der Schwangerschaft als Ursache eines wiederholten Testversagens im nicht-invasiven Pränataltest

Maternal Tumor Disease as a Reason for Repeated Test Failure in Cell-Free DNA Screening
Anne Karge
1   Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München
,
Oliver Graupner
1   Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München
,
Kathrin Abel
1   Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München
,
Bettina Kuschel
1   Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München
› Author Affiliations
Further Information

Publication History

eingereicht 19 September 2018

angenommen nach 21 January 2019

Publication Date:
14 June 2019 (online)

Zusammenfassung

Der nicht-invasive Pränataltest (NIPT) ist ein Screening-Test für fetale Chromosomenstörungen. Aktuelle Studien zeigen eine inzidentelle Detektion mütterlicher Malignome im Rahmen der NIPT-Diagnostik, wobei als NIPT-„Anomalie“ das simultane Vorliegen multipler Aneuploidien beschrieben wird. In diesem Fall konnte aufgrund eines wiederholten Testversagens („no call“) im NIPT die Diagnose einer maternalen Tumorerkrankung gestellt werden.

Abstract

Noninvasive prenatal testing (NIPT) is a screening test for fetal chromosome disorders. Recent studies show an incidental detection of maternal malignancies in NIPT diagnostics, where the simultaneous presence of multiple aneuploidies is described as an NIPT “anomaly”. In this case, the diagnosis of a maternal tumor disease was made due to a repeat NIPT failure (no call).

 
  • Literatur

  • 1 Schmid M, Klaritsch P, Arzt W. et al. Cell-Free DNA Testing for Fetal Chromosomal Anomalies in clinical practice: Austrian-German-Swiss Recommendations for non-invasive prenatal tests (NIPT). Ultraschall in der Medizin (Stuttgart, Germany : 1980) 2015; 36: 507-510. doi:10.1055/s-0035-1553804
  • 2 Bianchi DW, Chudova D, Sehnert AJ. et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. Jama 2015; 314: 162-169. doi:10.1001/jama.2015.7120
  • 3 Pavlidis NA. Coexistence of pregnancy and malignancy. The oncologist 2002; 7: 279-287
  • 4 Osborne CM, Hardisty E, Devers P. et al. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenatal diagnosis 2013; 33: 609-611. doi:10.1002/pd.4100
  • 5 Vandenberghe P, Wlodarska I, Tousseyn T. et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. The Lancet Haematology 2015; 2: e55-e65. doi:10.1016/s2352-3026(14)00039-8
  • 6 Amant F, Verheecke M, Wlodarska I. et al. Presymptomatic Identification of Cancers in Pregnant Women During Noninvasive Prenatal Testing. JAMA oncology 2015; 1: 814-819. doi:10.1001/jamaoncol.2015.1883
  • 7 Taneja PA, Snyder HL, de Feo E. et al. Noninvasive prenatal testing in the general obstetric population: clinical performance and counseling considerations in over 85 000 cases. Prenatal diagnosis 2016; 36: 237-243. doi:10.1002/pd.4766
  • 8 Zhang H, Gao Y, Jiang F. et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2015; 45: 530-538. doi:10.1002/uog.14792
  • 9 Dar P, Gross SJ, Benn P. Positive predictive values and false-positive results in noninvasive prenatal screening. American journal of obstetrics and gynecology 2015; 213: 595-596. doi:10.1016/j.ajog.2015.06.006
  • 10 Kozlowski P, Burkhardt T, Gembruch U. et al. DEGUM, OGUM, SGUM and FMF Germany Recommendations for the Implementation of First-Trimester Screening, Detailed Ultrasound, Cell-Free DNA Screening and Diagnostic Procedures. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2018; DOI: 10.1055/a-0631-8898.
  • 11 Revello R, Sarno L, Ispas A. et al. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2016; 47: 698-704. doi:10.1002/uog.15851
  • 12 Scott FP, Menezes M, Palma-Dias R. et al. Factors affecting cell-free DNA fetal fraction and the consequences for test accuracy. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 2018; 31: 1865-1872. doi:10.1080/14767058.2017.1330881
  • 13 Livergood MC, LeChien KA, Trudell AS. Obesity and cell-free DNA “no calls”: is there an optimal gestational age at time of sampling?. American journal of obstetrics and gynecology 2017; 216: 413.e411-413.e419. doi:10.1016/j.ajog.2017.01.011
  • 14 Norton ME, Wapner RJ. Cell-free DNA Analysis for Noninvasive Examination of Trisomy. The New England journal of medicine 2015; 373: 2582. doi:10.1056/NEJMc1509344
  • 15 Sun K, Jiang P, Chan KC. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 2015; 112: E5503-E5512. doi:10.1073/pnas.1508736112
  • 16 Fan HC, Gu W, Wang J. et al. Non-invasive prenatal measurement of the fetal genome. Nature 2012; 487: 320-324. doi:10.1038/nature11251
  • 17 Stumm M, Entezami M, Haug K. et al. Diagnostic accuracy of random massively parallel sequencing for non-invasive prenatal detection of common autosomal aneuploidies: a collaborative study in Europe. Prenatal diagnosis 2014; 34: 185-191. doi:10.1002/pd.4278
  • 18 Eiben B, Krapp M, Borth H. et al. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria. Ultrasound international open 2015; 1: E8-e11. doi:10.1055/s-0035-1555765
  • 19 Ou X, Wang H, Qu D. et al. Epigenome-wide DNA methylation assay reveals placental epigenetic markers for noninvasive fetal single-nucleotide polymorphism genotyping in maternal plasma. Transfusion 2014; 54: 2523-2533. doi:10.1111/trf.12659
  • 20 Romero R, Mahoney MJ. Noninvasive Prenatal Testing and Detection of Maternal Cancer. Jama 2015; 314: 131-133. doi:10.1001/jama.2015.7523
  • 21 Chan KC, Jiang P, Chan CW. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 2013; 110: 18761-18768. doi:10.1073/pnas.1313995110
  • 22 Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89-92
  • 23 Lo YM, Wong IH, Zhang J. et al. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 1999; 59: 3899-3903