Sportverletz Sportschaden 2021; 35(01): 18-23
DOI: 10.1055/a-0648-8699
Originalarbeit
Thieme. All rights reserved. (2019) Georg Thieme Verlag KG

Assessing Foot Loads in Continuous Passive Motion (CPM) and Active Knee Joint Motion Devices

Erfassung plantarer Lastverhältnisse auf kontinuierlich passiven Bewegungsschienen (CPM) und aktiven Bewegungsschienen des Kniegelenks
Benedikt Stolz
1   Division of Orthopaedic Rheumatology, Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
,
Casper Grim
2   Department of Trauma and Orthopaedic Surgery, Klinikum Osnabrück, Germany
,
Christoph Lutter
3   Department of Orthopedic and Trauma Surgery, Sportsorthopedics and Sportsmedicine, Klinikum Bamberg, Germany
,
Kolja Gelse
4   Department of Orthopedic Trauma Surgery, University Hospital Erlangen, Germany
,
Monika Schell
1   Division of Orthopaedic Rheumatology, Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
,
Bernd Swoboda
1   Division of Orthopaedic Rheumatology, Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
,
Hans-Dieter Carl
5   Department of Orthopaedic and Trauma Surgery, Martha-Maria Hospital, Nuremberg, Germany
,
Thilo Hotfiel
1   Division of Orthopaedic Rheumatology, Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
21 February 2019 (online)

Abstract

Background Continuous passive motion (CPM) and active knee joint motion devices are commonly applied after various surgical procedures. Despite the growing use of active motion devices, there is a paucity of data comparing plantar loads between the different mobilization techniques. The aim of this study was to investigate foot loads during knee joint mobilization in continuous passive and active knee joint motion devices and to compare this data to the physiological load of full weight-bearing.

Patients/Material and Methods Fifteen healthy participants (7 women and 8 men, 25 ± 3 years, 66 ± 6 kg, 175 ± 10 cm, BMI 21.9 ± 2) were recruited. Plantar loads were measured via dynamic pedobarography using a continuous passive motion device (ARTROMOT-K1, ORMED GmbH, Freiburg, Germany) and an active motion device (CAMOped, OPED AG, Cham, Switzerland), each with a restricted range of motion of 0-0-90° (ex/flex) and free ROM for the knee joint. For the active motion device, cycles were performed at four different resistance levels (0-III). Data were assessed using the pedar® X system (Novel Inc., Munich, Germany), which monitors loads from the foot-sole interface. Force values were compared between motion devices and normal gait, which served as the reference for conditions of full weight-bearing. P-values of < 0.05 were considered statistically significant.

Results Normal gait revealed peak forces of 694 ± 96 N, defined as 100 %. The CPM device produced plantar forces of less than 1.5 N. Using the active motion device in the setting of 0-0-90° produced foot loads of < 1.5 N (resistance 0-II) and 3.4 ± 9.3 N with a resistance of III (p < 0.001). Conditions of free ROM resulted in foot loads of 4.5 ± 4.5 N (resistance 0), 7.7 ± 10.7 N (resistance I), 6.7 ± 10.4 (resistance II) and 6.7 ± 6.9 N with a resistance of III (p < 0.001), corresponding to 0.6 %, 1.1 %, 1.0 % and 1.0 % of full weight-bearing, respectively.

Conclusion Motion exercises of the knee joint can be performed both with passive and active devices in accordance with strict weight-bearing restrictions, which are often recommended by surgeons. Also, active motion devices can be used when the ankle joint or foot have to be offloaded. Further studies assessing intraarticular joint load conditions have to be performed to confirm the findings obtained in this study.

Zusammenfassung

Hintergrund Kontinuierliche passive Bewegungsschienen (CPM) und aktive Bewegungsschienen werden regelmäßig in der Nachsorge kniegelenksnaher Operationen eingesetzt. Trotz der zunehmenden Verwendung von aktiven Bewegungsschienen existiert keine Studie, die resultierende Lastverhältnisse zwischen den oben genannten Bewegungsschienen vergleicht. Das Ziel der vorliegenden Studie war es, die plantare Kraftbelastung während der Anwendung von passiven und aktiven Bewegungsschienen zu erfassen und der physiologischen Gehbelastung (Vollbelastung) gegenüberzustellen.

Material und Methoden 15 gesunde Studienteilnehmer (7 Frauen und 8 Männer, Alter: 25 Jahre (Mittel) ± 3 (SD), Gewicht: 66 ± 6 kg, Größe: 175 ± 10 cm, BMI 21.9 ± 2 ) wurden als Probanden rekrutiert. Mit Hilfe der dynamischen Pedobarografie wurde die plantare Kraftbelastung auf einer passiven Bewegungsschiene (ARTROMOT-K1, ORMED GmbH, Freiburg, Deutschland) und einer aktiven Bewegungsschiene (CAMOped, OPED AG, Cham, Schweiz), jeweils bei 0-0-90° (Ex/Flex) und freiem Bewegungsausmaß erfasst. Auf der aktiven Bewegungsschiene wurden die Messreihen unter 4 vorgegebenen Widerstandsstufen ausgeführt. Zur Datenerhebung wurde das pedar®-X-System (Novel Inc., München, Deutschland) verwendet, das lokale Kräfte zwischen der Fußsohle und Plantar-seitig angeordneten Messsohlen erfasst. Die Kraftwerte wurden zwischen den Bewegungsschienen und normalen Gehbedingungen (repräsentativ für Bedingungen einer Vollbelastung) verglichen. P-Werte < 0,05 wurden als statistisch signifikant betrachtet.

Ergebnisse Das Gehen auf ebenem Boden resultierte in einer plantaren Kraftbelastung von 694 ± 96N (Mittelwert ± SD), gleichgesetzt als 100 %. Für jede CPM-Durchführung wurde eine plantare Kraftbelastung von < 1,5 N erfasst. Unter Verwendung der aktiven Bewegungsschiene (0-0-90°) wurden Kraftwerte von < 1,5 N für die Widerstände 0-II und ein Wert von 3,4 ± 9,3 N für den Widerstand III ermittelt. Unter freiem Bewegungsausmaß resultierten Werte auf der aktiven Bewegungsschiene von 4,5 ± 4,5 N für den Widerstand 0, 7,7 ± 10,7 N für den Widerstand I, 6,7 ± 10,4 N für den Wiederstand II und 6,7 ± 6,9 N für den Widerstand III (p < 0,001), entsprechend 0,6 %, 1,1 %, 1,0 % und 1,0 % der Vollbelastung.

Schlussfolgerung Bewegungsübungen, durchgeführt auf einer passiven und einer aktiven Bewegungsschiene, können unter pedobarografischen Gesichtspunkten auch unter strengen Teilbelastungsvorgaben des Kniegelenks durchgeführt werden. Weiterhin können sie bei Kombinationsverletzungen eingesetzt werden, bei denen weiterhin eine Entlastung des Fußes oder des Sprunggelenks erforderlich ist. Zukünftige Studien müssen durch intraartikuläre Kraftmessungen zeigen, inwieweit die vorliegenden Ergebnisse auf die intraartikulären Bedingungen übertragbar sind.

 
  • References

  • 1 Salter RB. The Biologic Concept of Continuous Passive Motion of Synovial Joints: The First 18 Years of Basic Research and Its Clinical Application. Clinical Orthopaedics and Related Research 1989; 242: 12-25
  • 2 Roos EM. Effectiveness and practice variation of rehabilitation after joint replacement. Current opinion in rheumatology 2003; 15: 160-162
  • 3 Chen Z, Wei JS, Hou ZY. et al. Application of internal fixation of steel–wire limited loop in early Achilles tendon rupture. Asian Pacific journal of tropical medicine 2013; 6: 902-907
  • 4 Alfredson H, Lorentzon R. Autologous periosteum transplantation for the treatment of full thickness patellar cartilage defects. Ortopedia, traumatologia, rehabilitacja 2001; 3: 216-223
  • 5 Enderle E, Frosch K. Stage-dependent arthroscopic treatment of knee joint infections. Operative Orthopadie und Traumatologie 2013; 25: 225-235
  • 6 Paysant J, Jardin C, Biau D. et al. What is the interest of early knee mobilization after total knee arthoplasty?. In, Annales de readaptation et de medecine physique: revue scientifique de la Societe francaise de reeducation fonctionnelle de readaptation et de medecine physique 2008; 51 (02) 138-143
  • 7 Salter RBH, Henry W, Wedge JH. et al. Clinical application of basic research on continuous passive motion for disorders and injuries of synovial joints: A preliminary report of a feasibility study. Journal of Orthopaedic Research 1984; 1 (03) 325-342
  • 8 Karnes JM, Harris JD, Griesser MJ. et al. Continuous passive motion following cartilage surgery: does a common protocol exist?. The Physician and sportsmedicine 2013; 41: 53-63
  • 9 Howard JS, Mattacola CG, Romine SE. et al. Continuous Passive Motion, Early Weight Bearing, and Active Motion following Knee Articular Cartilage Repair Evidence for Clinical Practice. Cartilage 2010; 1: 276-286
  • 10 Rogan S, Taeymans J, Hirschmuller A. et al. Effect of continuous passive motion for cartilage regenerative surgery – a systematic literature review. Z Orthop Unfall 2013; 151: 468-474
  • 11 McCarthy MR, O’Donoghue PC, Yates CK. et al. The clinical use of continuous passive motion in physical therapy. Journal of Orthopaedic & Sports Physical Therapy 1992; 15: 132-140
  • 12 Harms M, Engstrom B. Continuous passive motion as an adjunct to treatment in the physiotherapy management of the total knee arthroplasty patient. Physiotherapy 1991; 77: 301-307
  • 13 Chaudhry H, Bhandari M. Cochrane in CORR®: Continuous Passive Motion Following Total Knee Arthroplasty in People With Arthritis (Review). Clinical Orthopaedics and Related Research® 2015; 473: 3348-3354
  • 14 Fox J, Poss R. The role of manipulation following total knee replacement. J Bone Joint Surg Am 1981; 63: 357-362
  • 15 Saleh KJ, Lee LW, Gandhi R. et al. Quadriceps strength in relation to total knee arthroplasty outcomes. Instructional course lectures 2009; 59: 119-130
  • 16 Markel DC, Morris GD. Effect of external sequential compression devices on femoral venous blood flow. Journal of the Southern Orthopaedic Association 2001; 11: 2-9; quiz 10
  • 17 Bouët V, Gahery Y. Muscular exercise improves knee position sense in humans. Neuroscience letters 2000; 289: 143-146
  • 18 Friemert B, Schmidt R, Jouini C. et al. The influence of a controlled active motion splint on proprioception after anterior cruciate ligament plasty. A prospective randomized study. Der Unfallchirurg 2006; 109: 22-29
  • 19 Friemert B, Bach C, Schwarz W. et al. Benefits of active motion for joint position sense. Knee Surgery, Sports Traumatology, Arthroscopy 2006; 14: 564-570
  • 20 Arts M, Bus S. Twelve steps per foot are recommended for valid and reliable in-shoe plantar pressure data in neuropathic diabetic patients wearing custom made footwear. Clinical biomechanics 2011; 26: 880-884
  • 21 Hotfiel T, Carl HD, Wendler F. et al. Plantar pressures increase with raising body weight: A standardised approach with paired sample using neutral shoes. J Back Musculoskelet Rehabil 2017; 30: 583-589
  • 22 Kluger AK, Carl HD, Jendrissek A. et al. Introduction of a neutral shoe to assess reference values for dynamic pedobarography. Biomedical Engineering/Biomedizinische Technik 2014; 59: 213-217
  • 23 Asik M, Sen C, Kilic B. et al. High tibial osteotomy with Puddu plate for the treatment of varus gonarthrosis. Knee Surgery, Sports Traumatology, Arthroscopy 2006; 14: 948-954
  • 24 Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. journal of orthopaedic & sports physical therapy 2014; 44: 102-119
  • 25 Meier E, Gelse K, Trieb K. et al. First clinical study of a novel complete metal-free ceramic total knee replacement system. Journal of orthopaedic surgery and research 2016; 11: 1
  • 26 Poh SY, Hube R, Dienst M. Arthroscopic treatment of femoroacetabular pincer impingement. Operative Orthopädie und Traumatologie 2015; 27: 536-552
  • 27 Walther M, Altenberger S, Kriegelstein S. et al. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix. Operative Orthopädie und Traumatologie 2014; 26: 603-610
  • 28 Bruns J. Osteochondrosis dissecans. Orthopade 1997; 26: 573-584
  • 29 Pfeifer CG, Grechenig S, Frankewycz B. et al. Analysis of 213 currently used rehabilitation protocols in foot and ankle fractures. Injury 2015; 46: S51-S57
  • 30 Westby MD, Brittain A, Backman CL. Expert consensus on best practices for post–acute rehabilitation after total hip and knee arthroplasty: a Canada and United States Delphi study. Arthritis care & research 2014; 66: 411-423
  • 31 Ebert J, Robertson W, Lloyd DG. et al. Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthritis and Cartilage 2008; 16: 1131-1140
  • 32 Gusinde J, Pauser J, Swoboda B. et al. Foot loading characteristics of different graduations of partial weight bearing. Int J Rehabil Res 2011; 34: 261-264
  • 33 Pauser J, Jendrissek A, Swoboda B. et al. Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing. Arch Phys Med Rehabil 2011; 92: 1847-1851
  • 34 Pauser J, Jendrissek A, Brem M. et al. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer. Int Orthop 2012; 36: 1411-1415
  • 35 Wild L, Carl HD, Golditz T. et al. How do leg press exercises comply with limited weight bearing?. Phys Ther Sport 2016; 22: 1-5
  • 36 Bartlett M, Warren P. Effect of warming up on knee proprioception before sporting activity. British journal of sports medicine 2002; 36: 132-134
  • 37 Wu J, Lv M, Zhou Y. Association of knee range of motion and continuous passive motion following total knee arthroplasty: a meta-analysis. Ann Joint 2016; 1: 5
  • 38 Hill AD, Palmer MJ, Tanner SL. et al. Use of continuous passive motion in the postoperative treatment of intra-articular knee fractures. J Bone Joint Surg Am 2014; 96: e118
  • 39 Boese CK, Weis M, Phillips T. et al. The efficacy of continuous passive motion after total knee arthroplasty: a comparison of three protocols. The Journal of arthroplasty 2014; 29: 1158-1162
  • 40 Maniar RN, Baviskar JV, Singhi T. et al. To Use or Not to Use Continuous Passive Motion Post–Total Knee Arthroplasty: Presenting Functional Assessment Results in Early Recovery. The Journal of arthroplasty 2012; 27: 193-200. e191
  • 41 Brosseau L, Milne S, Wells G. et al. Efficacy of continuous passive motion following total knee arthroplasty: a metaanalysis. The journal of rheumatology 2004; 31: 2251-2264
  • 42 Lenssen A, Köke A, De Bie R. et al. Continuous passive motion following primary total knee arthroplasty: short-and long-term effects on range of motion. Physical Therapy reviews 2003; 8: 113-121
  • 43 Hahn T, Carl HD, Jendrissek A. et al. Assessment of plantar pressure in hindfoot relief shoes of different designs. J Am Podiatr Med Assoc 2014; 104: 19-23
  • 44 Westphal E, Carl HD, Krinner S. et al. Plantar force deviations in dynamic pedobarography – The role of insole and platform based systems as influencing factors. Sports Orthopaedics and Traumatology 2016; 32: 380-386
  • 45 Hotfiel T, Hotfiel KH, Gelse K. et al. Einlagenversorgung im Leistungssport – Indikationen, Wirkungsweise, sportspezifische Versorgungsstrategien. Sports Orthopaedics and Traumatology 2016; 32: 250-257
  • 46 Kluger AK, Carl HD, Jendrissek A. et al. Introduction of a neutral shoe to assess reference values for dynamic pedobarography. Biomed Tech (Berl) 2014; 59: 213-217
  • 47 Schaefer A, Hotfiel T, Pauser J. et al. Incompliance of total hip arthroplasty (THA) patients to limited weight bearing. Arch Orthop Trauma Surg 2015; 135: 265-269
  • 48 Carl HD, Pfander D, Swoboda B. Assessment of plantar pressure in forefoot relief shoes of different designs. Foot Ankle Int 2006; 27: 117-120