Subscribe to RSS
DOI: 10.1055/a-0590-5153
Discovery of Bioactive Natural Products for the Treatment of Acute Respiratory Infections – An Integrated Approach[*]
Correspondence
Publication History
received 16 November 2017
revised 01 March 2018
accepted 07 March 2018
Publication Date:
19 March 2018 (online)
Abstract
In this work, an integrated approach for the identification of new antiviral agents from natural sources for the treatment of acute respiratory infections is presented. The approach comprises (i) the selection of starting material based on traditional knowledge, (ii) phenotypic screening of extracts for antiviral activity, and (iii) the implementation of in silico predictions to identify antiviral compounds and derive the molecular mechanism underlying their biological activity. A variety of starting materials from plants and fungi was selected for the production of 162 extracts. These extracts were tested in cytopathic effect inhibition assays against influenza virus A/Hong Kong/68 (HK/68), rhinovirus A2 (RV-A2), and coxsackie virus B3 (CV-B3). All extracts were also evaluated regarding their cytotoxicity. At an IC50 threshold of 50 µg/mL, 20, 11, and 14% of all tested extracts showed antiviral activity against HK/68, CV-B3, and RV-A2, respectively. Among all active extracts (n = 47), 68% showed antiviral activity against one of the investigated viruses, whereas 31% inhibited at least two viruses. Herein, we present a comprehensive dataset of probed extracts along with their antiviral activities and cytotoxicity. Application examples presented in this work illustrate the phytochemical workflow for the identification of antiviral natural compounds. We also discuss the challenges, pitfalls, and advantages of the integrated approach.
#
Abbreviations
Introduction
Acute respiratory infections (ARIs) affect the lives of millions of people each year. They are the leading cause of morbidity and mortality related to infectious diseases worldwide [1]. ARIs are typically caused by enteroviruses (EVs), e.g., coxsackie viruses (CVs) and the closely related rhinoviruses (RVs), or influenza A viruses (IAVs) and influenza B viruses (IBVs). Virus infections might also occur in combination with bacterial infections caused by Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, or Pseudomonas aeruginosa [2], [3], [4].
Neither vaccines nor antiviral drugs are available for the prevention or treatment of EV infections [5], [6]. For IAV and IBV infections, the gold standard for prevention is vaccination [7], [8]. Treatment options are limited to ion channel blockers (M2 inhibitors) and NAIs. Most circulating IAVs are resistant to approved M2 inhibitors (amantadine and rimantadine in particular) [9]. Also, the portfolio of NAIs is small, with oseltamivir and zanamivir being the only two NAIs approved in most countries. Further NAIs include laninamivir, approved in Japan, and peramivir, approved in Japan, China, South Korea, and the USA [10]. Japan was the first country to approve the stockpiling of favipiravir, an RNA polymerase inhibitor, for use during influenza pandemics in 2016 [11].
The risk of emerging NAI-resistant IAVs was demonstrated by the recent local [12], [13] and global [14] outbreaks of seasonal H1N1 IAV that acquired mutations compensating the fitness loss caused by the H275Y mutation [12].
The lack of anti-EV drugs, the limited efficacy of NAIs against IVs, resistance issues, and the limited availability of favipiravir demand for the identification of novel highly active anti-EV and anti-IV agents as leads for drug development. Natural products are a primary resource for the discovery and development of new antivirals [15]. For the identification of bioactive secondary metabolites from plant, fungal, microbial, or marine sources, a variety of approaches such as (i) the exploitation of chemotaxonomic or ethnopharmacological knowledge, (ii) extract screening followed by bioassay-guided isolation, and (iii) computational approaches have been developed and applied [16], [17]. Probing multicomponent mixtures and their constituents is generally approached by two different strategies: (1) phenotypic screening, where the identification of promising starting material is based on the constituentsʼ ability to trigger a desired biological response without knowledge of the underlying mode of action, and (2) target-based screening, where a specific working hypothesis serves as a starting point for the identification of bioactive compounds effective on a specific molecular target [18].
In this study, an integrated approach combining, in particular, knowledge from traditional medicine and phenotypic screening of extracts is presented. The objective was to identify antiviral natural products against three pathogens involved in ARIs: HK/68, RV-A2, and CV-B3. The application, scope, and limitations of this integrated approach are discussed and supported by a number of examples. Screening data of 162 extracts are presented to guide the selection of further promising candidates for the discovery of natural products targeting viral proteins.
#
Results and Discussion
Ethnopharmacological sources comprising the books “De materia medica” by Pedanios Dioscurides [19], “Naturalis historiae libri” by Plini the Elder [20], “Das große Buch der Heilpflanzen” and sources cited therein [21], and the published final report of an EU-Interreg-II project, “Volksmedizin in Tirol” [22] served as a starting point. The key words “cough”, “cold”, “catarrh”, “sore throat”, “fever”, “lung disease”, “pneumonia”, “flu”, “bronchitis”, and “pleuritis” were used for searching in these four sources to select plant and fungal species with a traditional background for the treatment of symptoms related to ARIs.
The final selection comprised 141 diverse plant and fungal species belonging to 66 different families, with Asteraceae (10%), Lamiaceae (10%), Apiaceae (6%), and Fabaceae (4%) being the most prominent ones ([Table 1]). For some of the selected species, individual extracts were produced from different organs, resulting in a total of 162 extracts.
Code |
Species |
Family |
Organ |
Extract type |
HK/68 |
CV-B3 |
RV-A2 |
CC50 [µg/mL] in |
||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IC50 [µg/mL] of CPE |
Selectivity index [CC50/IC50] |
IC50 [µg/mL] of CPE |
Selectivity index [CC50/IC50] |
IC50 [µg/mL] of CPE |
Selectivity index [CC50/IC50] |
MDCK cells |
HeLa cells |
|||||
*No IC50 could be determined due to toxicity. The last noncytotoxic test concentration with an antiviral effect is reported instead. Abbreviations: n. a. = not active, n. d. = not determined, D = dichloromethane, M = methanol, LLE = lead-like enhanced extracts [23], [24], H2O = water, E = ethanol |
||||||||||||
1 |
Abutilon theophrasti Medik. |
Malvaceae |
seeds |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
2 |
Aegle marmelos (L.) Corrêa |
Rutaceae |
fruit |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
3 |
Allium sativum var. sativum L. |
Amaryllidaceae |
bulb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
4 |
Anchieta pyrifolia (Mart.) G. Don |
Violaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
5 |
Andographis paniculata (Burm. F.) Nees |
Acanthaceae |
herb |
LLE |
79 |
> 1.3 |
n. a. |
– |
n. a. |
– |
> 100 |
64 |
6 |
Angelica sinensis (Oliv.) Diels |
Apiaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
7 |
Annona squamosa L. |
Annonaceae |
seeds |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
6.3 |
8 |
Aquilegia vulgaris L. |
Ranunculaceae |
herb |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
9 |
Arctostaphylos uva-ursi (L.) Spreng. |
Ericaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
82 |
10 |
Arisaema sp. |
Araceae |
rhizome |
LLE |
68 |
> 1.5 |
n. a. |
– |
32* |
– |
> 100 |
68 |
11 |
Artemisia absinthum L. |
Asteraceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
129 |
12 |
Artemisia anomala S. Moore |
Asteraceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
13 |
Artemisia argyi Levl. & Vant. |
Asteraceae |
leaves |
LLE |
24 |
2.5 |
n. a. |
– |
32* |
– |
60 |
67 |
14 |
Artemisia vulgaris L. |
Asteraceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
15 |
Aster tataricus L. f. |
Asteraceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
16 |
Azadirachta indica A. Juss. |
Meliaceae |
fruit |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
84 |
n. d. |
17 |
Boswellia serrata Roxb. ex Colebr. |
Burseraceae |
resin |
D |
9.0 |
2.4 |
n. d. |
– |
n. a. |
– |
21 |
16 |
18 |
Buddleja officinalis Maxim. |
Loganiaceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
81 |
19a |
Burkea africana Hook. |
Fabaceae |
bark |
D |
24 |
3 |
32* |
– |
29 |
2.1 |
71 |
60 |
19b |
Burkea africana Hook. |
Fabaceae |
bark |
M |
5.6 |
11 |
n. a. |
– |
n. a. |
– |
63 |
16 |
20a |
Burkea africana Hook. |
Fabaceae |
heartwood |
D |
22 |
> 4.5 |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
20b |
Burkea africana Hook. |
Fabaceae |
heartwood |
M |
48 |
> 2.1 |
32* |
– |
n. a. |
– |
> 100 |
74 |
21 |
Calamintha menthifolia L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
22 |
Calendula officinalis L. |
Asteraceae |
flowers |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
23 |
Capsella bursa-pastoris (L.) Medik. |
Brassicaceae |
herb |
LLE |
44 |
2.9 |
n. a. |
– |
n. a. |
– |
126 |
> 200 |
24 |
Carlina acaulis L. |
Asteraceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
145 |
25 |
Carlina acaulis L. |
Asteraceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
26 |
Carum carvi L. |
Apiaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
27 |
Castanea sativa Mill. |
Fagaceae |
leaves |
LLE |
n. a. |
– |
46 |
1.7 |
n. a. |
– |
n. d. |
80 |
28a |
Centaurea ragusina L. |
Asteraceae |
leaves |
LLE |
2.7 |
2.4 |
n. a. |
– |
n. a. |
– |
6.4 |
9.0 |
28b |
Centaurea ragusina L. |
Asteraceae |
leaves |
H2O |
n. a. |
– |
n. d. |
– |
n. d. |
– |
62 |
n. d. |
28c |
Centaurea ragusina L. |
Asteraceae |
leaves |
E |
n. a. |
– |
n. d. |
– |
n. d. |
– |
2.3 |
n. d. |
29 |
Cetraria islandica (L.) Ach. |
Parmeliaceae |
thallus |
LLE |
44 |
3.3 |
50* |
– |
50* |
– |
148 |
91 |
30 |
Chenopodium ambrosioides (L.) Mosyakin & Clemants |
Amaranthaceae |
leaves |
LLE |
75 |
> 1.3 |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
31 |
Chrysanthemum indicum L. |
Asteraceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
32 |
Cinnamomum mairei H. Lév. |
Lauraceae |
bark |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
33 |
Cordia curassavica (Jacq.) Roem. & Schult. |
Boraginaceae |
leaves |
LLE |
30 |
2.0 |
n. a. |
– |
n. a. |
– |
60 |
31 |
34 |
Cynanchum paniculatum (Bunge) Kitag. ex H.Hara |
Apocynaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
4.7 |
> 100 |
35 |
Cynanchum stauntonii (Decne.) Schltr. ex H.Lév. |
Apocynaceae |
root |
LLE |
9.1 |
2.1 |
n. a. |
– |
n. a. |
– |
19 |
> 100 |
36 |
Cynomorium songaricum Rupr. |
Cynomoriaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
37 |
Daucus carota L. |
Apiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
38 |
Drynaria fortunei (Kunze) J. Sm. |
Polypodiaceae |
rhizome |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
39 |
Elettaria cardamomum (L.) Maton |
Zingiberaceae |
fruit |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
40 |
Epimedium sagittatum (Sieb. & Zucc.) Maxim. |
Berberidaceae |
herb |
LLE |
86 |
> 1.2 |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
41 |
Equisetum arvense L. |
Equisetaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
42 |
Equisetum hiemale L. |
Equisetaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
43 |
Euphrasia officinalis ssp. rostkoviana Hayne (L.) |
Orobanchaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
44 |
Evodia rutaecarpa (Juss.) Benth. |
Rutaceae |
fruit |
LLE |
n. a. |
– |
1.0* |
– |
n. a. |
– |
48 |
0.8 |
45 |
Fagopyrum esculentum Moench. |
Polygonaceae |
seeds |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 200 |
> 100 |
46 |
Foeniculum vulgare L. |
Apiaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
152 |
47 |
Fomes fomentarius J. J. Kickx. (strain 19) |
Polyporaceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
48 |
Fomitopsis pinicola Karst. (strain 10) |
Fomitopsidaceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
n. a. |
– |
18 |
16 |
49 |
Forsythia suspensa (Thunb.) Vahl |
Oleaceae |
fruit |
LLE |
22 |
3.5 |
32* |
– |
n. a. |
– |
76 |
40 |
50 |
Fraxinus sp. |
Oleaceae |
bark |
LLE |
91 |
> 1.1 |
n. a. |
– |
91 |
> 1.1 |
> 100 |
> 100 |
51 |
Galeopsis tetrahit L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
52 |
Ganoderma applanatum (Pers.) Pat. (strain 12) |
Ganodermataceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
10* |
– |
18 |
16 |
53 |
Ganoderma lucidum Karst. |
Ganodermataceae |
fruit body |
LLE |
37 |
2.5 |
n. a. |
– |
n. a. |
– |
94 |
54 |
54 |
Ganoderma sinense Zhao, Xu & Zang |
Ganodermataceae |
fruit body |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
55 |
Ganoderma tsugae Murill. |
Ganodermataceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
28 |
2.0 |
48 |
55 |
56 |
Gardenia jasminoides Ellis. |
Rubiaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
57 |
Glechoma hederacea L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
> 50 |
– |
n. d. |
109 |
58 |
Gleditsia sinensis Lam. |
Fabaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
66 |
29 |
59 |
Gloeophyllum odoratum Imazeki (strain 23) |
Gloeophyllaceae |
fruit body |
E |
13 |
> 7.7 |
36 |
2.2 |
19 |
4.1 |
> 100 |
77 |
60 |
Gloeophyllum odoratum Imazeki (strain 28) |
Gloeophyllaceae |
fruit body |
E |
9.4 |
> 11 |
16 |
2.5 |
27 |
1.4 |
> 100 |
39 |
61 |
Gloeophyllum odoratum Imazeki (strain 54) |
Gloeophyllaceae |
fruit body |
E |
15 |
> 6.8 |
31 |
> 3.3 |
16 |
> 6.3 |
> 100 |
> 100 |
62 |
Glycyrrhiza glabra L. |
Fabaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
47 |
> 4.3 |
n. d. |
> 200 |
63 |
Hedera helix L. |
Araliaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
64 |
Helianthus annuus L. |
Asteraceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
65 |
Hepatica nobilis Schreb. |
Ranunculaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
66 |
Hericium erinaceus (Bull.) Pers. |
Hericiaceae |
fruit body |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
67 |
Imperata cylindrica var. major (Nees) C. E. Hubb |
Poaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
68 |
Inonotus obliquus (Ach. ex Pers.) Pilát |
Hymenochaetaceae |
fruit body |
LLE |
31 |
4.7 |
n. a. |
– |
n. a. |
– |
147 |
52 |
69 |
Ischnoderma benzoinum Karst. (strain 38) |
Fomitopsidaceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
32* |
– |
68 |
71 |
70 |
Kaempferia galanga L. |
Zingiberaceae |
rhizome |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
71 |
Lactuca sativa L. |
Asteraceae |
herb |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
72 |
Laetiporus sulphureus (Bull.) Murrill (strain 43) |
Fomitopsidaceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
62 |
73 |
Lantana camara L. |
Verbenaceae |
leaves |
LLE |
n. a. |
– |
32* |
– |
n. a. |
– |
66 |
25 |
74 |
Lepidium apetalum Willd. |
Apiaceae |
seeds |
LLE |
n. a. |
– |
32* |
– |
n. a. |
– |
> 100 |
88 |
75 |
Liquidambar orientalis Mill. |
Hamamelidaceae |
resin |
LLE |
47 |
2.0 |
n. a. |
– |
13* |
– |
93 |
31 |
76 |
Lonicera japonica Thunb. |
Caprifoliaceae |
twigs |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
77 |
Lophaterum gracile Brongn. |
Poaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
78 |
Lycopodium clavatum L. |
Lycopodiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
50* |
– |
n. d. |
78 |
79 |
Lycopodium clavatum L. |
Lycopodiaceae |
spores |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 200 |
122 |
80 |
Lycopus lucidus var. hirtus Regel. |
Lamiaceae |
herb |
LLE |
76 |
> 1.3 |
32* |
– |
n. a. |
– |
> 100 |
96 |
81 |
Lygodium japonicum (Thunb.) Sw. |
Lygodiaceae |
spores |
LLE |
41 |
> 2.4 |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
82 |
Magnolia sp. |
Magnoliaceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
40 |
83 |
Matricaria chamomilla L. |
Asteraceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
84 |
Melissa officinalis L. |
Lamiaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
84 |
85 |
Morus alba L. |
Moraceae |
root bark |
M |
30 |
> 3.4 |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
86 |
Nelumbo nucifera Gaertn. |
Nelumbonaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
75 |
87 |
Nelumbo nucifera Gaertn. |
Nelumbonaceae |
root |
LLE |
48 |
1.5 |
22 |
1.9 |
13* |
– |
74 |
42 |
88 |
Nelumbo nucifera Gaertn. |
Nelumbonaceae |
seeds |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
89 |
Origanum vulgare L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
90 |
Papaver rhoeas L. |
Papaveraceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
91 |
Papaver somniferum L. |
Papaveraceae |
seeds |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
92 |
Peucedanum ostruthium (L.) Koch |
Apiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
93 |
Peucedanum ostruthium (L.) Koch |
Apiaceae |
root |
LLE |
48 |
1.2 |
n. a. |
– |
n. a. |
– |
66 |
45 |
94 |
Pharbitis sp. |
Convolvulaceae |
seeds |
LLE |
32 |
1.2 |
n. a. |
– |
n. a. |
– |
39 |
20 |
95 |
Phellinus robustus (L.) Quel. (strain 25) |
Hymenochaetaceae |
fruit body |
LLE |
92 |
> 1.2 |
n. a. |
– |
n. a. |
– |
> 100 |
88 |
96 |
Pimenta dioica (L.) Merr. |
Myrtaceae |
fruit |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
97 |
Pimpinella anisum L. |
Apiaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
98 |
Pimpinella major (L.) Huds. |
Apiaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
155 |
99 |
Pinguicula vulgaris L. |
Lentibulariaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
100 |
Piper nigrum L. |
Piperaceae |
fruit |
LLE |
n. a. |
– |
11 |
1.5 |
n. a. |
– |
n. d. |
17 |
101 |
Piptoporus betulinus Karst. (strain 29) |
Fomitopsidaceae |
fruit body |
E |
10* |
– |
10* |
– |
8.3 |
2.3 |
54 |
22 |
102 |
Piptoporus betulinus Karst. (strain 39) |
Fomitopsidaceae |
fruit body |
E |
10* |
– |
10* |
– |
9.9 |
3.8 |
40 |
38 |
103 |
Plantago lanceolata L. |
Plantaginaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
104 |
Polygala senega L. |
Polygalaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
147 |
105 |
Polygala sp. |
Polygalaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
106 |
Polygala vulgaris L. |
Polygalaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
107 |
Polygonum aviculare L. |
Polygonaceae |
herb |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
108 |
Polypodium vulgare L. |
Polypodiaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
109 |
Potentilla anserinae L. |
Rosaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
110 |
Potentilla aurea L. |
Rosaceae |
herb |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
111 |
Prunella grandiflora D. Torre & Sarnth. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
112 |
Pterocarpus santalinus L. f. |
Fabaceae |
wood |
LLE |
12 |
4.6 |
n. d. |
– |
n. d. |
– |
54 |
n. d. |
113 |
Pyrrosia sp. |
Polypodiaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
114 |
Ribes nigrum L. |
Grossulariaceae |
leaves |
LLE |
n. a. |
– |
> 50 |
– |
n. a. |
– |
n. d. |
89 |
115 |
Ribes nigrum L. |
Grossulariaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
116 |
Rosa canina L. |
Rosaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
117 |
Rosmarinus officinalis L. |
Lamiaceae |
leaves |
LLE |
n. a. |
– |
8.0 |
4.0 |
n. a. |
– |
n. d. |
32 |
118 |
Rubus fruticosus L. |
Rosaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
119 |
Rubus fruticosus L. |
Rosaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
120 |
Ruta graveolens L. |
Rutaceae |
herb |
LLE |
8.5 |
< 0.7 |
3.5 |
3.5 |
n. a. |
– |
< 6.3 |
12 |
121 |
Salvia glutinosa L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
50* |
– |
25* |
– |
n. d. |
127 |
122 |
Sambucus nigra L. |
Adoxaceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
123 |
Sambucus nigra L. |
Adoxaceae |
fruit |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
124 |
Saussurea costus (Falc.) Lipsch. |
Asteraceae |
root |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
56 |
n. d. |
125a |
Sclerocarya birrea (A. Rich.) Hochst. |
Anacardiaceae |
bark |
D |
13 |
> 7.9 |
n. a. |
– |
n. a. |
– |
> 100 |
46 |
125b |
Sclerocarya birrea (A. Rich.) Hochst. |
Anacardiaceae |
bark |
M |
3.4 |
> 29 |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
125c |
Sclerocarya birrea (A. Rich.) Hochst. |
Anacardiaceae |
bark |
E |
3.9 |
> 26 |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
126a |
Sclerocarya birrea (A. Rich.) Hochst. |
Anacardiaceae |
heartwood |
D |
38 |
> 2.6 |
n. a. |
– |
n. a. |
– |
> 100 |
96 |
126b |
Sclerocarya birrea (A. Rich.) Hochst. |
Anacardiaceae |
heartwood |
M |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
127 |
Scrophularia nodosa L. |
Scrophulariaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
128 |
Scrophularia nodosa L. |
Scrophulariaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
129 |
Scutellaria barbata D. Don |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
130 |
Sida cordifolia L. |
Malvaceae |
herb |
LLE |
n. a. |
– |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
131 |
Sinomenium acutum (Thunb.) Rehd. & Wils. |
Menispermaceae |
twigs |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
132 |
Solanum dulcamara L. |
Solanaceae |
twigs |
LLE |
n. a. |
– |
n. a. |
– |
50 |
> 4 |
n. d. |
> 200 |
133 |
Solanum paniculatum L. |
Solanaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
77 |
51 |
134 |
Solanum pseudoquina A. St.-Hil. |
Solanaceae |
leaves |
LLE |
81 |
> 1.2 |
n. a. |
– |
n. a. |
– |
> 100 |
87 |
135 |
Solanum torvum Sw. |
Solanaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
136 |
Sophora flavescens Ait. |
Fabaceae |
root |
LLE |
n. a. |
– |
32* |
– |
n. a. |
– |
> 100 |
60 |
137 |
Stachys officinalis L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
50 |
> 4 |
n. d. |
> 200 |
138 |
Stachys sylvatica L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
139 |
Stemona sp. |
Stemonaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
140 |
Styrax calamitus L. |
Styracaceae |
resin |
LLE |
50 |
1.5 |
n. a. |
– |
13* |
– |
74 |
59 |
141 |
Syzygium aromaticum (L.) Merr. & L. M.Perry |
Myrtaceae |
flowers |
LLE |
73 |
> 1.4 |
n. d. |
– |
n. d. |
– |
> 100 |
n. d. |
142 |
Terminalia chebula Retz. |
Combretaceae |
fruit |
LLE |
14 |
2.0 |
n. a. |
– |
n. a. |
– |
28 |
33 |
143 |
Teucrium chamaedrys L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
144 |
Thymus pulegioides L. |
Lamiaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
50 |
3.0 |
n. d. |
152 |
145 |
Tilia cordata Mill. |
Malvaceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
146 |
Trametes gibbosa (Pers.) Fr. (strain 52) |
Polyporaceae |
fruit body |
E |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
147 |
Tussilago farfara L. |
Asteraceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
148 |
Vaccinium vitis-ideae L. |
Ericaceae |
leaves |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
149 |
Valeriana officinalis L. |
Valerianaceae |
root |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
150 |
Verbascum densiflorum Bertol. |
Scrophulariaceae |
flowers |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
151 |
Verbena officinalis L. |
Verbenaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
152 |
Veronica officinalis L. |
Plantaginaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
153 |
Viola odorata L. |
Violaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
154 |
Viola tricolor L. |
Violaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
n. d. |
> 200 |
155 |
Viscum coloratum (Komar.) Nakai |
Loranthaceae |
herb |
LLE |
n. a. |
– |
n. a. |
– |
n. a. |
– |
> 100 |
> 100 |
A recently reported protocol for the preparation of LLEs [23], [24] was adapted for the production of small-scale extracts of the acquired natural materials. Additionally, 15 plant extracts (produced either by extraction with dichloromethane, methanol, ethanol, or water) were included in the extract screening ([Table 1]).
The ability of extracts to inhibit the virus-induced CPE was evaluated with a phenotypic assay described previously [25], [26]. In this work, multicomponent mixtures were screened in a cellular model to test whether the contained compounds were able to protect the cells from the respective virus. The observed effects served as a basis for further experiments to determine the bioactive compounds and their biological targets. All 162 extracts were tested for their anti-influenza activity against HK/68 in MDCK cells. The majority of the extracts (88%) were also tested against CV-B3 and RV-A2 in HeLa cells ([Table 1] and [Fig. 1 a]). Forty-seven extracts (29%) were active (i.e., having IC50 values no higher than 50 µg/mL) against at least one of the three viruses. Of these extracts, 33 (20%), 16 (11%), and 20 (14%) extracts were active against HK/68, CV-B3, and RV-A2, respectively. IC50 values were below 30 µg/mL for 21 (13%), 8 (6%), and 14 (10%) extracts, respectively. Sixty-eight percent showed antiviral activity (defined as IC50 values no higher than 50 µg/mL) against one of the investigated viruses, whereas 15 extracts (31%) inhibited at least 2 viruses. Cytotoxicity was determined for all samples as a prerequisite for the estimation of selectivity of antiviral activity. The SI of each antiviral active extract was calculated to evaluate the specificity of antiviral activity ([Table 1]). Raw data for the determination of IC50 and CC50 values (and respective CI) of the most active extracts are given in Table 2S, Supporting Information.
Two-dimensional plots of activity and cytotoxicity data allowed for the prioritization and targeted selection of starting materials for further phytochemical and pharmacological investigations ([Fig. 1]). In particular, the extracts were classified into four different categories based on their measured antiviral activity and cytotoxicity ([Fig. 1 a]).
Category A extracts (i.e., extracts located in quadrant A of [Fig. 1 a]) had distinct antiviral activity (IC50 ≤ 50 µg/mL) and no or low cytotoxicity (CC50 ≥ 50 µg/mL), giving an SI > 5. These extracts were considered to be most promising for further processing. Category B and D extracts (located in the respective quadrants of [Fig. 1 a]) showed weak or no antiviral activity against the tested viruses (IC50 ≥ 50 µg/mL) and were therefore not investigated further. Category C extracts (located in quadrant C of [Fig. 1 a]) were active (IC50 ≤ 50 µg/mL), but also cytotoxic (CC50 ≤ 50 µg/mL). These extracts are potentially worthwhile investigating because the observed cytotoxicity may be mediated by components other than those responsible for the extractʼs antiviral activity, and those components could potentially be separated. However, cytotoxic compounds may be able to mimic biological activity and cause false-positive assay readouts (measurements potentially affected by this type of assay interference are indicated with an asterisk in [Table 1]). The probability of false-positive outcomes resulting from cytotoxicity is a function of the ratio of CC50 and IC50, denoted as the SI. The higher the SI, the lower is the risk of false-positive results. Accordingly, extracts with SI values greater than 2 are candidates worthwhile investigating further. An enlarged depiction of this area of interest (quadrant A and the upper part of quadrant C) is shown in [Fig. 1 b].
In the following paragraphs, we report on the most relevant findings obtained from the extract screening and show how the integrated approach can help to overcome some of the pitfalls in the discovery of antiviral natural compounds.
The majority of extracts was prepared according to the protocol for the preparation of LLE [23], [24]. In addition, some of the already available extracts were produced without the application of defatting or tannin depletion procedures. These include the extracts from the bark of Burkea africana (no. 19a and 19b) and Sclerocarya birrea (no. 125a, 125b, and 125c), which showed potent anti-influenza activity without a significant level of cytotoxicity (Table 2S, Supporting Information). These plant materials as well as the fruits of Terminalia chebula (no. 142) are known to contain high amounts of tannins. Tannins tend to build nonselective protein complexes [27], [28], [29] and were previously shown to prevent virus adsorption to the host cells [30], [31], [32]. The focus of our project was to identify novel antiviral compounds active against viral targets other than those involved in adsorption. Accordingly, following the specific antiviral activity in category A, extracts from the bark of B. africana and S. birrea, and the fruits of T. chebula were generated on a larger scale for phytochemical investigations. For further evaluation of the antiviral activity of these extracts, a polyamide column was employed to separate the extracts into fractions free of polyphenols, fractions with low molecular weight polyphenols, and fractions with polymerized polyphenols (e.g., tannins).
In the case of S. birrea and T. chebula, the in vitro results indicated a strong influence of tannins on the antiviral activity. While the tannin-depleted fractions were not or only weakly active in the CPE assay, an antiviral effect was observed for the fractions with polyphenols present. Therefore, the phytochemical investigation of these two plant materials was discontinued.
As recently published, the situation was different in the case of B. africana, where tannin-free fractions showed distinct activities against influenza HK/68, with IC50 values of about 3 µg/mL [33]. Accordingly, polyphenol-rich fractions were neglected, whereas the tannin-free fractions were investigated further (Fig. 2S, Supporting Information). Eight novel triterpene saponins from lupane and oleanane types were identified as the bioactive principles (Fig. 2S, Supporting Information). In the CPE assay, the most active compounds showed IC50 values between 0.05 µM and 0.27 µM against HK/68 and the 2009 pandemic H1N1 strain A/Jena/8178/09 [33].
To explore the limitations of this integrated approach, the extracts of Piper nigrum fruits (no. 100) and Ruta graveolens herbs (no. 120) were selected for further analysis. These extracts out of category C exerted significant antiviral activities, but also problematic levels of cytotoxicity (SI between 1 and 2). The aim here was to determine whether the antiviral activity and cytotoxicity are mediated by different components and whether those could be separated.
The extract of R. graveolens (no. 120; Figs. 4S and 5S, Supporting Information) obtained IC50 values of 8.5 and 3.5 µg/mL in the phenotypic assay with HK/68 and CV-B3, respectively. Due to cytotoxicity (CC50 = 12 µg/mL in HeLa cells and below 6.3 µg/mL in MDCK cells), no exact IC50 for RV-A2 could be determined but was estimated by visual evaluation to be in the range of 12 to 25 µg/mL. Sixteen metabolites isolated from aerial parts of R. graveolens were evaluated in a previous study [34]. These are the alkaloids S-ribalinine, arborinine, isoplatydesmine, (−)-edulinine, and norgraveoline, the coumarins 7-methoxycoumarin, 6,7,8-trimethoxycoumarin, daphnoretin methyl ether, rutamarin, isoimperatorine, psoralen, bergapten, and 8-methoxy psoralene, and the phenyl propionic acid derivatives methyl 3-hydroxy-3-(4-hydroxy-3,5-dimethoxyphenyl) propanoate, methyl 3-(6-hydroxy-7-methoxy-benzofuran-5-yl) propanoate, and methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)oxirane-2-carboxylate). In that study, the potential targets of these metabolites were predicted with a pharmacophore-based in silico approach. For one out of five metabolites predicted as inhibitors of the RV coat protein (i.e., arborine), an inhibitory activity was detected by an experiment against the capsid protein of RV-A2 (IC50 = 3.2 µM) [34]. Also 6,7,8-trimethoxycoumarin (not picked up by the in silico approach) showed activity against the capsid protein of RV-A2, with an IC50 of 12 µM. The CC50 values of both of these compounds were greater than 50 µM. This case demonstrates the successful isolation of noncytotoxic, antiviral constituents from a category C extract. In the present study, the 16 metabolites previously isolated from R. graveolens were further assayed for their CPE inhibition on HK/68 and CV-B3. The furanocoumarin rutamarin protected cells from a HK/68- and CV-B3-induced CPE with IC50 values of 2.7 µM and 5.1 µM, respectively ([Table 2], [Fig. 2]). All other constituents were inactive (data not shown). Since rutamarin is one of the main constituents identified for this extract [34], its cytotoxic and antiviral activity might reflect that of the whole extract. However, an effect of the high level of cytotoxicity of rutamarin (CC50 in MDCK cells: 4.7 µM; CC50 in HeLa cells: 4.6 µM) on the observed anti-influenza and anti-CV-B3 activity cannot be excluded.
Name |
Inhibition of virus-induced cytopathic effect |
Cytotoxicity |
||||||
---|---|---|---|---|---|---|---|---|
HK/68 |
CV-B3 |
RV-A2 |
CC50 (CI95) [µM] in |
|||||
IC50 (CI95) [µM] in MDCK cells |
Selectivity index [CC50/IC50] |
IC50 (CI95) [µM] in HeLa cells |
Selectivity index [CC50/IC50] |
IC50 (CI95) [µM] of CPE in HeLa cells |
Selectivity index [CC50/IC50] |
MDCK cells |
HeLa cells |
|
*Tested only once; **tested only twice; n. a. = not active; n. d. = not determined |
||||||||
Rutamarin |
2.7 (2.4 – 3.2)** |
1.7 |
5.1 (3.6 – 7.1)** |
0.9 |
n. d. |
4.7* |
4.6* |
|
Piperine |
n. d. |
n. a. |
41 (15 – 79) |
2.2 |
n. d. |
88 (77 – 87) |
||
Feruperine |
n. d. |
n. a. |
n. a. |
n. d. |
> 100 |
|||
Piperylin |
n. d. |
51 (32 – 75) |
> 1.9 |
79 (36 – 139) |
> 1.3 |
n. d. |
> 100 |
|
1-[(2E,4E,8E)-9-(1,3-Benzodioxol-5-yl)-1-oxo-2,4,8-nonatrienyl]-pyrrolidine |
n. d. |
61 (44 – 79) |
> 1.6 |
n. a. |
n. d. |
> 100 |
||
N-trans-feruloyl-piperidine |
n. d. |
n. a. |
n. a. |
n. d. |
> 100 |
|||
Piperoleine A |
n. d. |
22 (18 – 25) |
1.2 |
n. a. |
n. d. |
25 (18 – 34) |
||
Dehydropipernonaline |
n. d. |
24 (14 – 35) |
1.4 |
n. a. |
n. d. |
34 (24 – 44) |
||
Pipernonaline |
n. d. |
~ 32 |
0.7 |
n. a. |
n. d. |
21 (13 – 31) |
||
Chabamide |
n. d. |
9.1 (7.1 – 11) |
1.2 |
n. a. |
n. d. |
11 (8.6 – 14) |
||
Pipertipine |
n. d. |
n. a. |
n. a. |
n. d. |
21 (16 – 27) |
|||
Ganoderol B |
17 (13 – 31) |
> 5.9 |
n. a. |
65 (39 – 93) |
> 1.5 |
> 100 |
> 100 |
The extract of P. nigrum fruits (no. 100; Figs. 6S and 7S, Supporting Information) revealed an antiviral activity against CV-B3 (IC50 = 11 µg/mL). However, due to significant cytotoxicity observed with HeLa cells (CC50 = 16.8 µg/mL), the obtained antiviral activity data are questionable. For a more detailed analysis, ten piperamides that have been extracted as part of a previous study [35] [i.e., piperine, feruperine, piperylin, 9-(1,3-benzodioxol-5-yl)-1-(1-pyrrolidinyl) 2E,4E,8E-nonatrien-1-one, N-trans-feruloyl-piperidine, piperoleine A, dehydropipernonaline, pipernonaline, chabamide, and pipertipine] were scrutinized for their CV-B3 inhibiting CPE ([Fig. 2]). The most active compounds were chabamide (IC50 = 9.1 µM; CC50 = 11 µM), piperoleine A (IC50 = 22 µM; CC50 = 25 µM), and dehydropipernonaline (IC50 = 24 µM; CC50 = 34 µM) (see [Table 2]). However, in this case, attempts to separate the antiviral and cytotoxic constituents were not successful.
Phenotypic assays can provide valuable information for the prioritization of extracts for phytochemical processing and pharmacological analysis. There is a clear added value in integrating computational methods into this screening setup. In silico methods can, e.g., guide the identification of the mode of action or mechanism of toxicity. They can also identify the most promising constituents of extracts for isolation and testing on a target of interest, e.g., for influenza NA [36], [37], [38]. In a previously performed computational study, we identified secondary metabolites present in the fruit body extract of Ganoderma lucidum Karst. (no. 53) that likely exhibit activity on anti-influenza and anti-RV targets [39]. A database of 279 known constituents of the fungus (mostly lanostane-type triterpenes) was compiled and screened with a pharmacophore-based approach for activity against a selection of viral targets. As one outcome of this study, ganoderol B ([Fig. 2]) was identified as a potential inhibitor of the RV coat protein [39], and was therefore selected here for experimental testing on HK/68 and RV-A2. In the phenotypic CPE assay, previously isolated ganoderol B [40] showed moderate activity against HK/68 and RV-A2 (IC50 = 17 µM and 65 µM, respectively; [Table 2]), even though the crude extract (no. 53; Figs. 8S and 9S, Supporting Information) did not show any activity against RV-A2 ([Table 1]).
With the integrated strategy for the identification of bioactive compounds from extracts that we present in this work, several of the shortcomings of extract screening (e.g., false-positive assay readouts caused by interference or cytotoxicity provoked by multicomponent mixtures) can be leveraged. In particular, the combination of ethnopharmacological knowledge with effective, phenotypic screening technologies can accelerate and improve the prioritization of promising extracts as starting materials. Furthermore, the integration of computational methods can contribute valuable insights on the mode of action and mechanism of toxicity of individual constituents and provide guidance to in vitro analyses.
The data on extracts and their biological and toxicological profiles reported in this work shall serve as a starting point for future investigations. Moreover, the generated extract library can serve as a valuable platform for the scientific community. This collection of well-defined LLEs is now available for further studies including biological tests, analytical studies, or a combination of both.
Besides promising extracts with no or low cytotoxicity (i.e., category A extracts), extracts from the upper part of quadrant C in [Fig. 1 b] (i.e., category C extracts that exhibited antiviral activity but also some degree of cytotoxicity) may also be worthwhile probing for bioactive ingredients, while bearing in mind that the observed cytotoxicity may interfere with the phenotypic assay.
#
Materials and Methods
Natural materials
Some of the plant and mushroom materials were collected in Tyrol/Austria and identified by J. M. Rollinger or U. Peintner (Institute of Microbiology, University of Innsbruck, Austria). Further plant material was purchased from commercial providers, and some materials/extracts were obtained from collaboration partners (Table 1S, Supporting Information). Voucher specimens are deposited in the Herbarium of the Department of Pharmacognosy, University of Vienna, Austria, unless otherwise stated in Table 1S, Supporting Information.
#
Generation of small-scale extracts
Combined dichloromethane and methanol extracts of plant and fungal species were prepared as described recently [23], [24]. Briefly, ground-dried material was defatted with n-hexane. The dried, defatted material was then extracted successively with dichloromethane and methanol, whereby the two resulting extracts were combined. Finally, tannin depletion via polyamide gel was carried out in order to remove compounds likely to cause assay interference.
In a few cases, the materials were not defatted and the dichloromethane (D) and methanol (M) extract were kept separately. Moreover, ethanol (E) or aqueous (H2O) extracts were also generated for a small number of natural materials.
#
Cell culture and viruses
H3N2 IV strain HK/68 (strain collection of the Department of Virology and Antiviral Therapy, Jena, Germany), CV-B3 (CV-B3 Nancy; Institute of Poliomyelitis and Virus Encephalitides, Moscow, Russia), and RV-A2 (Medical University of Vienna, Vienna, Austria) were used in antiviral studies. IVs were propagated in MDCK cells (Friedrich-Loeffler Institute, Riems, Germany) in serum-free Eagleʼs minimum essential medium, 2 µg/mL trypsin, and 1.2 mM bicarbonate [41]. CV-B3 and RV-A2 were grown and tested in Eagleʼs minimal essential medium supplemented with 2% neonatal calf serum (PAA, Cölbe, Germany). Cells were proved to be free of mycoplasma contamination before using. Titers of virus stocks were determined according to Reed and Muench [42] in MDCK cells and HeLa cells, respectively.
#
Determination of cytotoxicity and cytopathic effect inhibition
The CC50 is defined as the concentration of a sample (in our case extract or pure compound) where the viability of treated cells in comparison to untreated control cells (mean viability of six controls is set to 100%) is reduced by half [25]. The IC50 is the concentration of a virus inhibitor (in our case extract or pure compound) where the response (grade of cell destruction, i.e., CPE caused by the virus) is reduced by half [25]. The IC50 was determined on 2-day-old confluent MDCK cell monolayers (for HK/68) and on 1-day-old and 2-day-old confluent HeLa Ohio cells for RV-A2 and CV-B3, respectively [43]. The cells were grown in 96-well plates as described previously (maximum tested concentration: 100 or 200 µg/mL for extracts and 100 µM for compounds) [25]. The maximum applied solvent concentration was 0.5% (v/v). Cytotoxicity was analyzed 72 h after adding the extracts. CPE inhibition was measured 48 h after infection for HK/68 and CV-B3, and 72 h after infection for RV-A2. A multiplicity of infection of 0.003, 0.001 – 0.002, and 0.02 TCID50/cell of HK/68, CV-B3, and RV-A2, respectively, resulted in a complete CPE at this time point. CC50 and IC50 values were calculated from mean dose-response curves of at least three independent experiments. Linear regression using Microsoft Excel was therefore used in the linear scaled dose-dependent sample concentrations (in µg/mL) ([Tables 1] and 2S, Fig. 1S, Supporting Information).
These CC50 and IC50 values were used (i) to easily evaluate the specificity of antiviral activity after calculating the SI (CC50/IC50) and (ii) for categorization of activity. Then, the mean CC50 and IC50 values and confidence intervals of most active extracts (SI > 5) as well as some antiviral but also cytotoxic examples (SI < 5) were calculated. Oseltamivir, guanidine hydrochloride, and pleconaril served as positive controls for HK/68, CV-B3, and RV-A2, respectively.
#
#
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgements
The authors thank B. Jahn (Department of Virology and Antiviral Therapy, Jena University Hospital, Germany) for technical assistance, and A. Kaserer and C. Draschl (Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria) for extract preparation. This work was supported by the Austrian Science Fund (FWF: P24587) and the European Social Fund (ESF & TMWAT Project 2011 FGR 0137).
* Dedicated to “Women in Natural Products Science”.
Supporting Information
- Supporting Information
References to the origin and voucher specimens of the natural materials (deposited in the herbarium) including their registration numbers (Table 1S), data leading to the determination of the IC50s/CC50s (individual and means) as well as their confidence intervals (Table 2S) and graphs depicting dose-dependencies (Fig. 1S) for the most active extracts and further investigated extracts, and chromatograms of HPLC analyses and structures of main constituents for the most relevant extracts (Figs. 2S–9S) are available as Supporting Information.
-
References
- 1 World Health Organization. The top 10 causes of death. Available at. http://www.who.int/mediacentre/factsheets/fs310/en Accessed September 29, 2017
- 2 Jacobs SE, Lamson DM, St George K, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev 2013; 26: 135-162
- 3 McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 2014; 12: 252-262
- 4 Melvin JA, Bomberger JM. Compromised defenses: exploitation of epithelial responses during viral-bacterial co-infection of the respiratory tract. PLoS Pathog 2016; 12: e1005797
- 5 Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017; 24: 1-8
- 6 Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011; 31: 42-92
- 7 Millner VS, Eichold 2nd BH, Franks RD, Johnson GD. Influenza vaccination acceptance and refusal rates among health care personnel. South Med J 2010; 103: 993-998
- 8 Nguyen T, Henningsen KH, Brehaut JC, Hoe E, Wilson K. Acceptance of a pandemic influenza vaccine: a systematic review of surveys of the general public. Infect Drug Resist 2011; 4: 197-207
- 9 World Health Organization. Facts sheet on seasonal influenza. Available at. http://www.who.int/mediacentre/factsheets/fs211/en Accessed November 30, 2016
- 10 Hurt AC, Besselaar TG, Daniels RS, Ermetal B, Fry A, Gubareva L, Huang W, Lackenby A, Lee RT, Lo J, Maurer-Stroh S, Nguyen HT, Pereyaslov D, Rebelo-de-Andrade H, Siqueira MM, Takashita E, Tashiro M, Tilmanis D, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014–2015. Antiviral Res 2016; 132: 178-185
- 11 Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93: 449-463
- 12 Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, Lee RT, Iannello P, Gehrig N, Shaw R, Wark P, Caldwell N, Givney RC, Xue L, Maurer-Stroh S, Dwyer DE, Wang B, Smith DW, Levy A, Booy R, Dixit R, Merritt T, Kelso A, Dalton C, Durrheim D, Barr IG. Characteristics of a widespread community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in Australia. J Infect Dis 2012; 206: 148-157
- 13 Takashita E, Kiso M, Fujisaki S, Yokoyama M, Nakamura K, Shirakura M, Sato H, Odagiri T, Kawaoka Y, Tashiro M. Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013–2014 influenza season in Japan. Antimicrob Agents Chemother 2015; 59: 2607-2617
- 14 Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, Birch C, Buchy P, Chittaganpitch M, Chiu SC, Dwyer D, Guigon A, Harrower B, Kei IP, Kok T, Lin C, McPhie K, Mohd A, Olveda R, Panayotou T, Rawlinson W, Scott L, Smith D, DʼSouza H, Komadina N, Shaw R, Kelso A, Barr IG. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 2009; 83: 90-93
- 15 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
- 16 Rollinger JM, Langer T, Stuppner H. Strategies for efficient lead structure discovery from natural products. Curr Med Chem 2006; 13: 1491-1507
- 17 Chen Y, de Bruyn Kops C, Kirchmair J. Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 2017; 57: 2099-2111
- 18 Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev Drug Discov 2011; 10: 507-519
- 19 Berendes J. Des Pedanios Dioskurides aus Anazarbos Arzneimittellehre in fünf Büchern: reprint. Vaduz, Lichtenstein: Sändig Reprints Verlag; 1997
- 20 König R, Hopp J, Glöckner W, Winkler G. Plinius Secundus d. Ä. Naturkunde, Books XX–XVII. München, Zürich: Artemis Publisher; 1985
- 21 Pahlow M. Das große Buch der Heilpflanzen. München: Gräfe und Unzer; 1993
- 22 Ausserer O. Volksmedizin in Tirol. Tisens, Italy: EU Interregnum-II-Project; 2001
- 23 Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2012; 75: 72-81
- 24 Kratz JM, Mair CE, Oettl SK, Saxena P, Scheel O, Schuster D, Hering S, Rollinger JM. hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 2016; 82: 1009-1015
- 25 Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods 2001; 95: 133-143
- 26 Makarov VA, Riabova OB, Granik VG, Wutzler P, Schmidtke M. Novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication. J Antimicrob Chemother 2005; 55: 483-488
- 27 Jones WP, Kinghorn DA. Vegetable Tannins. In: Sarker SD, Latif Z, Gray AI. eds. Natural Products Isolation. Totowa, New Jersey: Humana Press Inc.; 2006: 338
- 28 Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of higher plants in lead compound discovery programs. J Nat Prod 2011; 74: 1539-1555
- 29 Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E. Polyphenol complexation – some thoughts and observations. Phytochemistry 1988; 27: 2397-2409
- 30 Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 2014; 93: 47-53
- 31 Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2016; 14: 57-80
- 32 Theisen LL, Erdelmeier CA, Spoden GA, Boukhallouk F, Sausy A, Florin L, Muller CP. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus. PLoS One 2014; 9: e88062
- 33 Mair CE, Grienke U, Wilhelm A, Urban E, Zehl M, Schmidtke M, Rollinger JM. Anti-influenza triterpene saponins from the bark of Burkea africana . J Nat Prod 2018; DOI: 10.1021/acs.jnatprod.7b00774.
- 34 Rollinger JM, Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, Gertsch J, Raduner S, Wolber G, Langer T, Stuppner H. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens . Planta Med 2009; 75: 195-204
- 35 Mair CE, Liu R, Atanasov AG, Wimmer L, Nemetz-Fiedler D, Sider N, Heiss EH, Mihovilovic MD, Dirsch VM, Rollinger JM. Piperine congeners as inhibitors of vascular smooth muscle cell proliferation. Planta Med 2015; 81: 1065-1074
- 36 Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Durrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai . J Med Chem 2010; 53: 778-786
- 37 Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, von Grafenstein S, Liedl KR, Schmidtke M, Rollinger JM. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod 2014; 77: 563-570
- 38 Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, Nietzsche S, Schmidtke M, Rollinger JM. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae . Sci Rep 2016; 6: 27156
- 39 Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 2015; 114: 114-124
- 40 Grienke U, Mihaly-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM. Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum . Bioorg Med Chem 2011; 19: 6779-6791
- 41 Bauer K, Richter M, Wutzler P, Schmidtke M. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006. Antiviral Res 2009; 82: 34-41
- 42 Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27: 493-497
- 43 Makarov VA, Braun H, Richter M, Riabova OB, Kirchmair J, Kazakova ES, Seidel N, Wutzler P, Schmidtke M. Pyrazolopyrimidines: potent inhibitors targeting the capsid of rhino- and enteroviruses. ChemMedChem 2015; 10: 1629-1634
Correspondence
-
References
- 1 World Health Organization. The top 10 causes of death. Available at. http://www.who.int/mediacentre/factsheets/fs310/en Accessed September 29, 2017
- 2 Jacobs SE, Lamson DM, St George K, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev 2013; 26: 135-162
- 3 McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 2014; 12: 252-262
- 4 Melvin JA, Bomberger JM. Compromised defenses: exploitation of epithelial responses during viral-bacterial co-infection of the respiratory tract. PLoS Pathog 2016; 12: e1005797
- 5 Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017; 24: 1-8
- 6 Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011; 31: 42-92
- 7 Millner VS, Eichold 2nd BH, Franks RD, Johnson GD. Influenza vaccination acceptance and refusal rates among health care personnel. South Med J 2010; 103: 993-998
- 8 Nguyen T, Henningsen KH, Brehaut JC, Hoe E, Wilson K. Acceptance of a pandemic influenza vaccine: a systematic review of surveys of the general public. Infect Drug Resist 2011; 4: 197-207
- 9 World Health Organization. Facts sheet on seasonal influenza. Available at. http://www.who.int/mediacentre/factsheets/fs211/en Accessed November 30, 2016
- 10 Hurt AC, Besselaar TG, Daniels RS, Ermetal B, Fry A, Gubareva L, Huang W, Lackenby A, Lee RT, Lo J, Maurer-Stroh S, Nguyen HT, Pereyaslov D, Rebelo-de-Andrade H, Siqueira MM, Takashita E, Tashiro M, Tilmanis D, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014–2015. Antiviral Res 2016; 132: 178-185
- 11 Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93: 449-463
- 12 Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, Lee RT, Iannello P, Gehrig N, Shaw R, Wark P, Caldwell N, Givney RC, Xue L, Maurer-Stroh S, Dwyer DE, Wang B, Smith DW, Levy A, Booy R, Dixit R, Merritt T, Kelso A, Dalton C, Durrheim D, Barr IG. Characteristics of a widespread community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in Australia. J Infect Dis 2012; 206: 148-157
- 13 Takashita E, Kiso M, Fujisaki S, Yokoyama M, Nakamura K, Shirakura M, Sato H, Odagiri T, Kawaoka Y, Tashiro M. Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013–2014 influenza season in Japan. Antimicrob Agents Chemother 2015; 59: 2607-2617
- 14 Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, Birch C, Buchy P, Chittaganpitch M, Chiu SC, Dwyer D, Guigon A, Harrower B, Kei IP, Kok T, Lin C, McPhie K, Mohd A, Olveda R, Panayotou T, Rawlinson W, Scott L, Smith D, DʼSouza H, Komadina N, Shaw R, Kelso A, Barr IG. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 2009; 83: 90-93
- 15 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
- 16 Rollinger JM, Langer T, Stuppner H. Strategies for efficient lead structure discovery from natural products. Curr Med Chem 2006; 13: 1491-1507
- 17 Chen Y, de Bruyn Kops C, Kirchmair J. Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 2017; 57: 2099-2111
- 18 Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev Drug Discov 2011; 10: 507-519
- 19 Berendes J. Des Pedanios Dioskurides aus Anazarbos Arzneimittellehre in fünf Büchern: reprint. Vaduz, Lichtenstein: Sändig Reprints Verlag; 1997
- 20 König R, Hopp J, Glöckner W, Winkler G. Plinius Secundus d. Ä. Naturkunde, Books XX–XVII. München, Zürich: Artemis Publisher; 1985
- 21 Pahlow M. Das große Buch der Heilpflanzen. München: Gräfe und Unzer; 1993
- 22 Ausserer O. Volksmedizin in Tirol. Tisens, Italy: EU Interregnum-II-Project; 2001
- 23 Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2012; 75: 72-81
- 24 Kratz JM, Mair CE, Oettl SK, Saxena P, Scheel O, Schuster D, Hering S, Rollinger JM. hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 2016; 82: 1009-1015
- 25 Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods 2001; 95: 133-143
- 26 Makarov VA, Riabova OB, Granik VG, Wutzler P, Schmidtke M. Novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication. J Antimicrob Chemother 2005; 55: 483-488
- 27 Jones WP, Kinghorn DA. Vegetable Tannins. In: Sarker SD, Latif Z, Gray AI. eds. Natural Products Isolation. Totowa, New Jersey: Humana Press Inc.; 2006: 338
- 28 Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of higher plants in lead compound discovery programs. J Nat Prod 2011; 74: 1539-1555
- 29 Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E. Polyphenol complexation – some thoughts and observations. Phytochemistry 1988; 27: 2397-2409
- 30 Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 2014; 93: 47-53
- 31 Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2016; 14: 57-80
- 32 Theisen LL, Erdelmeier CA, Spoden GA, Boukhallouk F, Sausy A, Florin L, Muller CP. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus. PLoS One 2014; 9: e88062
- 33 Mair CE, Grienke U, Wilhelm A, Urban E, Zehl M, Schmidtke M, Rollinger JM. Anti-influenza triterpene saponins from the bark of Burkea africana . J Nat Prod 2018; DOI: 10.1021/acs.jnatprod.7b00774.
- 34 Rollinger JM, Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, Gertsch J, Raduner S, Wolber G, Langer T, Stuppner H. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens . Planta Med 2009; 75: 195-204
- 35 Mair CE, Liu R, Atanasov AG, Wimmer L, Nemetz-Fiedler D, Sider N, Heiss EH, Mihovilovic MD, Dirsch VM, Rollinger JM. Piperine congeners as inhibitors of vascular smooth muscle cell proliferation. Planta Med 2015; 81: 1065-1074
- 36 Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Durrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai . J Med Chem 2010; 53: 778-786
- 37 Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, von Grafenstein S, Liedl KR, Schmidtke M, Rollinger JM. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod 2014; 77: 563-570
- 38 Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, Nietzsche S, Schmidtke M, Rollinger JM. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae . Sci Rep 2016; 6: 27156
- 39 Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 2015; 114: 114-124
- 40 Grienke U, Mihaly-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM. Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum . Bioorg Med Chem 2011; 19: 6779-6791
- 41 Bauer K, Richter M, Wutzler P, Schmidtke M. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006. Antiviral Res 2009; 82: 34-41
- 42 Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27: 493-497
- 43 Makarov VA, Braun H, Richter M, Riabova OB, Kirchmair J, Kazakova ES, Seidel N, Wutzler P, Schmidtke M. Pyrazolopyrimidines: potent inhibitors targeting the capsid of rhino- and enteroviruses. ChemMedChem 2015; 10: 1629-1634