CC BY-NC-ND 4.0 · Sleep Sci 2020; 13(04): 256-266
DOI: 10.5935/1984-0063.20200026
REVIEWS

Basic chronobiology: what do sleep physicians need to know?

Nevin F.W. Zaki
1   Mansoura University, Department of Psychiatry - Mansoura - Mansoura - Egypt.
,
David Warren Spence
2   Madurai Kamaraj University, Department of Animal Behaviour & Physiology - Madurai - Tamil Nadu - India.
,
Perumal Subramanian
3   Independent Researcher,, 652 Dufferin Street, - Toronto - ON - Canada.
,
Vijay K Bharti
4   Annamalai University, Department of Biochemistry and Biotechnology, Faculty of Science - Chidambaram - Tamil Nadu - India.
,
Ramanujam Karthikeyan
5   Defence Institute of High Altitude Research (DIHAR), Nutrition and Toxicology Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence - Leh - Jammu and Kashmir - India.
,
Ahmed Salem BaHammam
6   King Saud University, The University Sleep Disorders Center, Department of Medicine, College of Medicine - Riyadh - Riyadh - Saudi Arabia.
,
Seithikurippu R Pandi-Perumal
7   Somnogen Canada Inc., Corporate Management - Toronto - Ontario - Canada.
› Author Affiliations

Sleep is an essential physiological process, which profoundly affects a wide range of biological activities. It is now known that sleep supports myriad vital functions in the central nervous system. This includes neural plasticity, learning, memory, cognition and emotional regulation. Additionally, it affects basic processes such as cardiovascular, immunological and metabolic activity. Evidence from multiple lines of research has thus shown that good quality of sleep is essential for both survival and optimal functioning of life. Considerable evidence also supports the conclusion that even minimal dysfunctions in circadian regulation can significantly disrupt sleep and broadly affect body physiology. As a consequence, it is now appreciated that the therapy of sleep disorders is more complex than was once thought. At present, several clinical disciplines have recognized the significance of the biological clock in health and illness, and are incorporating this knowledge into treatment programs. Recent decades have seen the emergence of chronotherapies, i.e., treatment strategies that are aimed at producing adjustments in the circadian clock. The final objective of these approaches is to affect basic cellular and physiological processes, which in turn may be at the root of disorders such as physiological aging, immune functioning, metabolic activity, and psychiatric disturbance. It is suggested that the integration of chronobiological perspectives into many mainstream medical disciplines would be of significant benefit, both for the reduction of the prevalence of diseases and their treatment. This review considers the physiology of sleep and the importance of timekeeping mechanisms in the regulation of overall health.



Publication History

Received: 04 February 2019

Accepted: 29 April 2020

Article published online:
09 November 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55:16-54.
  • 2 Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517-49.
  • 3 Mazzotti DR, Guindalini C, Moraes WA, Andersen ML, Cendoroglo MS, Ramos LR, et al. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile. Front Aging Neurosci. 2014 Jun;6:134.
  • 4 Ikehara S, Iso H, Date C, Kikuchi S, Watanabe Y, Wada Y, et al. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep. 2009 Mar;32(3):295-301.
  • 5 Carskadon MA, Dement WC. Normal human sleep: an overview. Principles and practice of sleep medicine. 2005;4:13-23.
  • 6 Refinetti R. Circadian physiology. 3rd ed. Boca Raton, FL: CRC Press;2016.
  • 7 Webb WB, Agnew Junior HW. Are we chronically sleep deprived?. Bull Psychon Soc. 1975;6(1):47-8.
  • 8 Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007;30(12):1667-73.
  • 9 Krystal AD. Psychiatric disorders and sleep. Neurol Clin. 2012 Nov;30(4):1389-413.
  • 10 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985). 2005 Nov;99(5):2008-19.
  • 11 Nedeltcheva AV, Scheer FAJL. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2014 Aug;21(4):293-8.
  • 12 Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun. 2002 Oct;16(5):503-12.
  • 13 Frey DJ, Fleshner M, Wright Junior KP. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. . Brain Behav Immun. 2007;21(8):1050-7.
  • 14 Everson CA. Sustained sleep deprivation impairs host defense. Am J Physiol. 1993 Nov;265(5 Pt 2):R1148-54.
  • 15 Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms. 2003 Feb;18(1):80-90.
  • 16 Wirz-Justice A. Chronobiology and psychiatry. Sleep Med Rev. 2007 Dec;11(6):423-7.
  • 17 Czeisler CA, Allan JS, Strogatz SH, Ronda JM, Sanchez R, Rios CD, et al. Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science. 1986 Aug;233(4764):667-71.
  • 18 Smolensky MH, Peppas NA. Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev. 2007 Aug;59(9-10):828-51.
  • 19 Ehlers CL, Frank E, Kupfer DJ. Social zeitgebers and biological rhythms. A unified approach to understanding the etiology of depression. Arch Gen Psychiatry. 1988 Oct;45(10):948-52.
  • 20 Monk TH, Flaherty JF, Frank E, Hoskinson K, Kupfer DJ. The social rhythm metric. An instrument to quantify the daily rhythms of life. J Nerv Ment Dis. 1990 Feb;178(2):120-6.
  • 21 Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195-204.
  • 22 Borbely AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016 Apr;25(2):131-43.
  • 23 Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008 Jul;85(3):335-53.
  • 24 Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature’s most versatile biological signal?. FEBS J. 2006 Jul;273(13):2813-38.
  • 25 Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011 Mar;93(3):350-84.
  • 26 Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017 Mar;173:94-106.
  • 27 Pandi-Perumal SR, Zisapel N, Srinivasan V, Cardinali DP. Melatonin and sleep in aging population. Exp Gerontol. 2005 Dec;40(12):911-25.
  • 28 Pandi-Perumal SR, Smits M, Spence W, Srinivasan V, Cardinali DP, Lowe AD, et al. Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Jan;31(1):1-11.
  • 29 Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Medicine Reviews. 2005;9(1):25-39.
  • 30 Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011 Mar;96(3):E463-72.
  • 31 Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980 Dec;210(4475):1267-9.
  • 32 Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol. 2017 Apr;15(3):434-43.
  • 33 American Academy of Sleep Medicine (AASM). The international classification of sleep disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.
  • 34 Nesbitt AD. Delayed sleep-wake phase disorder. J Thorac Dis. 2018 Jan;10(Suppl 1):S103-S11.
  • 35 Zhu L, Zee PC. Circadian rhythm sleep disorders. Neurol Clin. 2012 Nov;30(4):1167-91.
  • 36 Abbott SM, Zee PC. Irregular Sleep-Wake Rhythm Disorder. Sleep Med Clin. 2015 Dec;10(4):517-22.
  • 37 Salva MAQ, Hartley S, Leger D, Dauvilliers YA. Non-24-hour sleepwake rhythm disorder in the totally blind: diagnosis and management. Front Neurol. 2017 Dec;8:686.
  • 38 Lee ML, Howard ME, Horrey WJ, Liang Y, Anderson C, Shreeve MS, et al. High risk of near-crash driving events following night-shift work. Proc Natl Acad Sci USA. 2016;113(1):176-81.
  • 39 Erren TC, Falaturi P, Morfeld P, Knauth P, Reiter RJ, Piekarski C. Shift work and cancer: the evidence and the challenge. Dtsch Arztebl Int. 2010 Sep;107(38):657-62.
  • 40 Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004 Dec;27(8):1453-62.
  • 41 Knutsson A, Boggild H. Gastrointestinal disorders among shift workers. Scand J Work Environ Health. 2010;36(2):85-95.
  • 42 Torquati L, Mielke GI, Brown WJ, Kolbe-Alexander T. Shift work and the risk of cardiovascular disease. a systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health. 2018 May;44(3):229-38.
  • 43 Davari MH, Naghshineh E, Mostaghaci M, Mirmohammadi SJ, Bahaloo M, Jafari A, et al. Shift Work Effects and Pregnancy Outcome: A Historical Cohort Study. J Family Reprod Health. 2018;12(2):84- 8.
  • 44 Rahman SA, Shapiro CM, Wang F, Ainlay H, Kazmi S, Brown TJ, et al. Effects of filtering visual short wavelengths during nocturnal shiftwork on sleep and performance. Chronobiol Int. 2013;30(8):951-62.
  • 45 Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, et al. Circadian rhythms in isolated brain regions. J Neurosci. 2002 Jan;22(1):350-6.
  • 46 Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, et al. The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci. 2000 Nov;20(21):8138-43.
  • 47 Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep. 2005 Apr;28(4):395-409.
  • 48 Ehlen JC, Brager AJ, Baggs J, Pinckney L, Gray CL, DeBruyne JP, et al. Bmal1 function in skeletal muscle regulates sleep. Elife. 2017 Jul;6:e26557.
  • 49 Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, et al. A role for cryptochromes in sleep regulation. BMC Neurosci. 2002;3:20.
  • 50 Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003 Jun;26(4):413-5.
  • 51 Ellis J, von Schantz M, Jones KH, Archer SN. Association between specific diurnal preference questionnaire items and PER3 VNTR genotype. Chronobiol Int. 2009 Apr;26(3):464-73.
  • 52 Johnson CH, Elliott JA, Foster R. Entrainment of circadian programs. Chronobiol Int. 2003 Sep;20(5):741-74.
  • 53 Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001 Feb;291(5506):1040-3.
  • 54 Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005 Mar;434(7033):640-4.
  • 55 Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2(4):342-6.
  • 56 Pereira DS, Tufik S, Louzada FM, Benedito-Silva AA, Lopez AR, Lemos NA, et al. Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it?. Sleep. 2005 Jan;28(1):29-32.
  • 57 Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(5):631-5.
  • 58 Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97-110.
  • 59 Kerkhof GA, Van Dongen HP. Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett. 1996 Nov;218(3):153-6.
  • 60 Roenneberg T, Kumar CJ, Merrow M. The human circadian clock entrains to sun time. Curr Biol. 2007 Jan;17(2):R44-5.
  • 61 Adan A, Natale V. Gender differences in morningness-eveningness preference. Chronobiol Int. 2002 Jul;19(4):709-20.
  • 62 Kerkhof GA. Inter-individual differences in the human circadian system: a review. Biol Psychol. 1985 Mar;20(2):83-112.
  • 63 Lahti TA, Leppämäki S, Ojanen SM, Haukka J, Tuulio-Henriksson A, Lonnqvist J, et al. Transition into daylight saving time influences the fragmentation of the rest-activity cycle. J Circadian Rhythms. 2006 Jan;4:1.
  • 64 Natale V, Adan A. Season of birth modulates morningness-eveningness preference in humans. Neurosci Lett. 1999 Oct;274(2):139-41.
  • 65 Mansour HA, Wood J, Chowdari KV, Dayal M, Thase ME, Kupfer DJ, et al. Circadian phase variation in bipolar I disorder. Chronobiol Int. 2005;22(3):571-84.
  • 66 Haim A, Zubidat AE. Artificial light at night: melatonin as a mediator between the environment and epigenome. Philos Trans R Soc Lond B Biol Sci. 2015 May;370(1667):20140121.
  • 67 Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. The Journal Of Experimental Biology. 2018 Mar;221(Pt 6):jeb156893.
  • 68 Czeisler CA. Perspective: casting light on sleep deficiency. Nature. 2013 May;497(7450):S13.
  • 69 Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of lightemitting eReaders negatively affects sleep, circadian timing, and nextmorning alertness. Proc Natl Acad Sci USA. 2015 Jan;112(4):1232-7.
  • 70 Herxheimer A. Jet lag. Clin Evid. 2004 Jun;11:2243-8.
  • 71 Szosland D. Shift work and metabolic syndrome, diabetes mellitus and ischaemic heart disease. Int J Occup Med Environ Health. 2010;23(3):287-91.
  • 72 Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011 Dec;8(12):e1001141.
  • 73 McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013 Aug;74(4):242-9.
  • 74 Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol. 2008 Oct;23(7):571-85.
  • 75 Dallmann R, Weaver DR. Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int. 2010 Aug;27(6):1317-28.
  • 76 Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML, Fu YH, et al. Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J Biol Chem. 2011;286(11):9063-70.
  • 77 Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997 Oct;18(5):716-38.
  • 78 Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004 Nov;2(11):e377.
  • 79 Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005 May;308(5724):1043-5.
  • 80 Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627- 31.
  • 81 Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol. 2013 Mar;23(5):372-81.
  • 82 Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev. 2014 Aug;35(4):648-70.
  • 83 Karthikeyan R, Marimuthu G, Spence DW, Pandi-Perumal SR, BaHammam AS, Brown GM, et al. Should we listen to our clock to prevent type 2 diabetes mellitus? Diabetes Res Clin Pract. 2014;106(2):182-90.
  • 84 Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol. 2011 May;57(3):249-56.
  • 85 Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci USA. 2016 Feb;113(10):E1402-11.
  • 86 Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001 Jan;12(1):74-7.
  • 87 Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003 Jun;95(11):825-8.
  • 88 Kessler K, Pivovarova-Ramich O. Meal timing, aging, and metabolic health. Int J Mol Sci. 2019 Apr;20(8):E1911. DOI: https://doi. org/10.3390/ijms20081911
  • 89 Allison KC, Goel N. Timing of eating in adults across the weight spectrum: metabolic factors and potential circadian mechanisms. Physiol Behav. 2018 Aug;192:158-66. DOI: https://doi.org/10.1016/j.physbeh.2018.02.047
  • 90 St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96-e121. DOI: https://doi. org/10.1161/CIR.20200026202000260476
  • 91 Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-61. DOI: https://doi.org/10.1101/ gad.183500
  • 92 Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, et al. Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism. 2016 May;65(5):714-27. DOI: https://doi.org/10.1016/j.metabol.2016.02.003
  • 93 Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014 Dec;20(6):991-1005.
  • 94 Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012 Jun;15(6):848-60. DOI: https://doi.org/10.1016/j.cmet.2012.04.019
  • 95 Berg C, Lappas G, Wolk A, Strandhagen E, Torén K, Rosengren A, et al. Eating patterns and portion size associated with obesity in a Swedish population. Appetite. 2009 Feb;52(1):21-6. DOI: https://doi. org/10.1016/j.appet.2008.07.008
  • 96 Beccuti G, Monagheddu C, Evangelista A, Ciccone G, Broglio F, Soldati L, et al. Timing of food intake: Sounding the alarm about metabolic impairments? A systematic review. Pharmacol Res. 2017 Nov;125(Pt B):132-41. DOI: https://doi.org/10.1016/j.phrs.2017.09.005
  • 97 Caliyurt O. Role of chronobiology as a transdisciplinary field of research: its applications in treating mood disorders. Balkan Med J. 2017 Dec;34(6):514-21.
  • 98 Albrecht U. Circadian clocks and mood-related behaviors. Handb Exp Pharmacol. 2013;(217):227-39.
  • 99 Dawson D, Armstrong SM. Chronobiotics: drugs that shift rhythms. Pharmacol Ther. 1996;69(1):15-36.
  • 100 Cardinali DP. Melatonin as a chronobiotic that opens the “gates of sleep”: the 1990s. In: Cardinali DP, ed. Ma Vie en Noir: fifty years with melatonin and the stone of madness. Cham: Springer International Publishing; 2016. p. 131-54.
  • 101 Figueiro MG, Nagare R, Price LLA. Non-visual effects of light: how to use light to promote circadian entrainment and elicit alertness. Lighting Res Technol. 2018;50(1):38-62.
  • 102 Wehr TA, Wirz-Justice A. Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmacopsychiatria. 1982 Jan;15(1):31-9.
  • 103 Wirz-Justice A, Benedetti F, Berger M, Lam RW, Martiny K, Terman M, et al. Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med. 2005 Jul;35(7):939-44.
  • 104 Lamont EW, Coutu DL, Cermakian N, Boivin DB. Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci. 2010;47(1):27-35.
  • 105 Samel A, Wegmann H-M. Bright light: a countermeasure for jet lag?. Chronobiol Int. 1997;14(2):173-83.
  • 106 Bunney BG, Bunney WE. Rapid-acting antidepressant strategies: mechanisms of action. Int J Neuropsychopharmacol. 2012 Jun;15(5):695-713.
  • 107 Danilenko KV, Ivanova IA. Dawn simulation vs. bright light in seasonal affective disorder: Treatment effects and subjective preference. J Affect Disord. 2015 Jul;180:87-9.
  • 108 Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry. 2000 Sep;48(6):593-604.
  • 109 Hood S, Amir S. Neurodegeneration and the Circadian Clock. Front Aging Neurosci. 2017;9:170.
  • 110 Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010 Aug;11(8):589-99.
  • 111 Rosenthal NE, Sack DA, Carpenter CJ, Parry BL, Mendelson WB, Wehr TA. Antidepressant effects of light in seasonal affective disorder. Am J Psychiatry. 1985 Feb;142(2):163-70.
  • 112 Zaki NFW, Spence DW, BaHammam AS, Pandi-Perumal SR, Cardinali DP, Brown GM. Chronobiological theories of mood disorder. Eur Arch Psychiatry Clin Neurosci. 2018 Mar;268(2):107-18.
  • 113 Nagayama H, Nagano K, Ikezaki A, Tashiro T. Double-blind study of the chronopharmacotherapy of depression. Chronobiol Int. 1991;8(3):203-9.
  • 114 Nagayama H, Takagi A, Sakurai Y, Yoshimoto S, Nishiwaki K, Takahasi R. Chromopharmacological study of neuroleptics. III. Circadian rhythm of brain susceptibility to haloperidol. Psychopharmacolyog (Berl). 1979 May;63(2):131-5.
  • 115 Bahammam A, Neubauer D, Pandi-Perumal SR. Sleep and sleep pharmacology. In: Gardenhire DS, ed. Rau’s respiratory care pharmacology. Philadelphia, PA: Elsevier Health Sciences; 2015. p. 408-26.
  • 116 Lewy AJ, Ahmed S, Jackson JM, Sack RL. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiology International. 1992;9(5):380-92.
  • 117 Dawson D, Gibbon S, Singh P. The hypothermic effect of melatonin on core body temperature: is more better?. J Pineal Res. 1996 May;20(4):192-7.
  • 118 Krauchi K, Cajochen C, Pache M, Flammer J, Wirz-Justice A. Thermoregulatory effects of melatonin in relation to sleepiness. Chronobiol Int. 2006;23(1-2):475-84.
  • 119 Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015 Apr/Jun;61(2-3):77-84.
  • 120 de la Iglesia HO, Fernandez-Duque E, Golombek DA, Lanza N, Duffy JF, Czeisler CA, et al. Access to electric light is associated with shorter sleep duration in a traditionally hunter-gatherer community. J Biol Rhythms. 2015 Aug;30(4):342-50.
  • 121 Stevens RG, Zhu Y. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?. Philos Trans R Soc Lond B Biol Sci. 2015 May;370(1667):20140120.