CC BY-NC-ND 4.0 · Sleep Sci 2017; 10(01): 47-54
DOI: 10.5935/1984-0063.20170008
ORIGINAL ARTICLE

Olfactory impairment is related to REM sleep deprivation in rotenone model of Parkinson's disease

Mariana F. Aurich
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
,
Lais S. Rodrigues
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
,
Adriano D. S. Targa
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
,
Ana Carolina D. Noseda
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
,
Flávia D. W. Cunha
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
,
Marcelo M. S. Lima
1   Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil.
› Author Affiliations

Abstract

Introduction Olfactory dysfunction affects about 85-90% of Parkinson's disease (PD) patients with severe deterioration in the ability of discriminate several types of odors. In addition, studies reported declines in olfactory performances during a short period of sleep deprivation. Besides, PD is also known to strongly affect the occurrence and maintenance of rapid eye movement (REM) sleep.

Methods Therefore, we investigated the mechanisms involved on discrimination of a social odor (dependent on the vomeronasal system) and a non-social odor (related to the main olfactory pathway) in the rotenone model of PD. Also, a concomitant impairment in REM sleep was inflicted with the introduction of two periods (24 or 48 h) of REM sleep deprivation (REMSD). Rotenone promoted a remarkable olfactory impairment in both social and non-social odors, with a notable modulation induced by 24 h of REMSD for the non-social odor.

Results Our findings demonstrated the occurrence of a strong association between the density of nigral TH-ir neurons and the olfactory discrimination capacity for both odorant stimuli. Specifically, the rotenone-induced decrease of these neurons tends to elicit reductions in the olfactory discrimination ability.

Conclusions These results are consistent with the participation of the nigrostriatal dopaminergic system mainly in the olfactory discrimination of a non-social odor, probably through the main olfactory pathway. Such involvement may have produce relevant impact in the preclinical abnormalities found in PD patients.



Publication History

Received: 27 October 2016

Accepted: 19 December 2016

Article published online:
29 September 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med. 1998 Oct 8;339(15):1044-53.
  • 2 Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med. 1998;339(16):1130-43.
  • 3 Lima MM, Andersen ML, Reksidler AB, Vital MA, Tufik S. The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PloS One. 2007;2(6):e513.
  • 4 Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, et al. Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Experimental Neurol. 2009;219(2):574-82.
  • 5 Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, et al. Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res. 2008;188(2):406-11.
  • 6 Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, et al. Dopaminergic control of sleep-wake states. J Neurosci. 2006;26(41):10577-89.
  • 7 Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8(6):329-39.
  • 8 Siderowf A, Jennings D, Eberly S, Oakes D, Hawkins KA, Ascherio A, et al. Impaired olfaction and other prodromal features in the Parkinson At-Risk Syndrome Study. Mov Disord. 2012;27;93):406-12.
  • 9 Tissingh G, Berendse HW, Bergmans P, DeWaard R, Drukarch B, Stoof JC, et al. Loss of olfaction in de novo and treated Parkinson’s disease: possible implications for early diagnosis. Mov Disord. 2001;16(1):41-6.
  • 10 Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol. 2004;56(2):173-81.
  • 11 Saifee T, Lees AJ, Silveira-Moriyama L. Olfactory function in Parkinson’s disease in ON versus OFF states. J Neurol Neurosurg Psychiatry. 2010;81(11):1293-5.
  • 12 Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis. 1975;28(9):493-7.
  • 13 Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H. Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61(5):413-26.
  • 14 Double KL, Rowe DB, Hayes M, Chan DK, Blackie J, Corbett A, et al. Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test. Arch Neurol. 2003;60(4):545-9.
  • 15 Brennan PA, Kendrick KM. Mammalian social odours: attraction and individual recognition. Philos Trans R Soc Lond B Biol Sci. 2006;361(1476):2061-78.
  • 16 Feinberg LM, Allen TA, Ly D, Fortin NJ. Recognition memory for social and non-social odors: differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex. Neurobiol Learn Mem. 2012;97(1):7-16.
  • 17 Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol Behav. 2001;72(3):379-85.
  • 18 McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 2006;26(37):9365-75.
  • 19 Fantini ML, Postuma RB, Montplaisir J, Ferini-Strambi L. Olfactory deficit in idiopathic rapid eye movements sleep behavior disorder. Brain Res Bull. 2006;70(4-6):386-90.
  • 20 Killgore WD, McBride SA. Odor identification accuracy declines following 24 h of sleep deprivation. J Sleep Res. 2006;15(2):111-6.
  • 21 Killgore WD, Killgore DB, Grugle NL, Balkin TJ. Odor identification ability predicts executive function deficits following sleep deprivation. Int J Neurosci. 2010;120(5):328-34.
  • 22 Killgore WD, Killgore DB, McBride SA, Kaminori GH, Balkin TJ. Odor identification ability predicts changes in symptoms of psychopathology following 56 h of sleep deprivation. J Sens Stud. 2008;23(1):35-51.
  • 23 Wong KK, Muller ML, Kuwabara H, Studenski SA, Bohnen NI. Olfactory loss and nigrostriatal dopaminergic denervation in the elderly. Neurosci Lett. 2010;484(3):163-7.
  • 24 Mundiñano IC, Caballero MC, Ordóñez C, Hernandez M, DiCaudo C, Marcilla I, et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 2011;122(1):61-74.
  • 25 Escanilla O, Yuhas C, Marzan D, Linster C. Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci. 2009;123(4):828-33.
  • 26 Borgmann-Winter KE, Wang HY, Ray R, Willis BR, Moberg PJ, Rawson NE, et al. Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia. Schizophr Bull. 2016;42(2):377-85.
  • 27 Huisman E, Uylings HB, Hoogland PV. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord. 2004;19(6):687-92.
  • 28 Doty RL, Risser JM. Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology (Berl). 1989;98(3):310-5.
  • 29 Koster NL, Norman AB, Richtand NM, Nickell WT, Puche AC, Pixley SK, et al. Olfactory receptor neurons express D2 dopamine receptors. J Comp Neurol. 1999;411(4):666-73.
  • 30 Sengoku R, Saito Y, Ikemura M, Hatsuta H, Sakiyama Y, Kanemaru K, et al. Incidence and extent of Lewy body-related alpha-synucleinopathy in aging human olfactory bulb. J Neuropathol Exp Neurol. 2008;67(11):1072-83.
  • 31 Rodrigues LS, Targa AD, Noseda AC, Aurich MF, Da Cunha C, Lima MM. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation. Front Cell Neurosci. 2014;8:383.
  • 32 Höglinger GU, Alvarez-Fischer D, Arias-Carrión O, Djufri M, Windolph A, Keber U, et al. A new dopaminergic nigro-olfactory projection. Acta Neuropathol. 2015;130(3):333-48.
  • 33 Alam M, Schmidt WJ. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res. 2004;153(2):439-46.
  • 34 Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756-64.
  • 35 Dos Santos AC, Castro MA, Jose EA, Delattre AM, Dombrowski PA, Da Cunha C, et al. REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson’s disease. J Neurosci Res. 2013;91(11):1508-16.
  • 36 Tufik S, Lindsey CJ, Carlini EA. Does REM sleep deprivation induce a supersensitivity of dopaminergic receptors in the rat brain? Pharmacology. 1978;16(2):98-105.
  • 37 Saravanan KS, Sindhu KM, Mohanakumar KP. Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res. 2005;1049(2):147-55.
  • 38 Moreira CG, Barbiero JK, Ariza D, Dombrowski PA, Sabioni P, Bortolanza M, et al. Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin. Neurotox Res. 2012;21(3):291-301.
  • 39 Machado RB, Hipólide DC, Benedito-Silva AA, Tufik S. Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res. 2004;1004(1-2):45-51.
  • 40 Soffié M, Lamberty Y. Scopolamine effects on juvenile conspecific recognition in rats: Possible interaction with olfactory sensitivity. Behav Processes. 1988;17(3):181-90.
  • 41 Prediger RD, Batista LC, Takahashi RN. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging. 2005;26(6):957-64.
  • 42 Prediger RD, Fernandes D, Takahashi RN. Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res. 2005;159(2):197-205.
  • 43 Chioca LR, Antunes VD, Ferro MM, Losso EM, Andreatini R. Anosmia does not impair the anxiolytic-like effect of lavender essential oil inhalation in mice. Life Sci. 2013;92(20-21):971-5.
  • 44 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. San Diego: Academic Press; 2005.
  • 45 Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301-6.
  • 46 Lima MM. Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev. 2013;17(5):367-75.
  • 47 Tufik S. Changes of response to dopaminergic drugs in rats submitted to REM-sleep deprivation. Psychopharmacology (Berl). 1981;72(3):257-60.
  • 48 Nunes Júnior GP, Tufik S, Nobrega JN. Autoradiographic analysis of D1 and D2 dopaminergic receptors in rat brain after paradoxical sleep deprivation. Brain Res Bull. 1994;34(5):453-6.
  • 49 Borghammer P, Knudsen K, Østergaard K, Danielsen EH, Pavese N, Arveschoug A, et al. Combined DaT imaging and olfactory testing for differentiating parkinsonian disorders. Int J Clin Pract. 2014;68(11):1345-51.
  • 50 Hutter JA, Chapman CA. Exposure to cues associated with palatable food reward results in a dopamine D2 receptor-dependent suppression of evoked synaptic responses in the entorhinal cortex. Behav Brain Funct. 2013;9:37.
  • 51 Devore S, Lee J, Linster C. Odor preferences shape discrimination learning in rats. Behav Neurosci. 2013;127(4):498-504.
  • 52 Hackett C, Choi C, O’Brien B, Shin P, Linster C. Odor Memory and Discrimination Covary as a Function of Delay between Encoding and Recall in Rats. Chem Senses. 2015;40(5):315-23.
  • 53 Lin DY, Zhang SZ, Block E, Katz LC. Encoding social signals in the mouse main olfactory bulb. Nature. 2005;434(7032):470-7.
  • 54 Martinez-Marcos A. On the organization of olfactory and vomeronasal cortices. Progr Neurobiol. 2009;87(1):21-30.
  • 55 Killgore WD, McBride SA, Killgore DB, Balkin TJ, Kamimori GH. Baseline odor identification ability predicts degradation of psychomotor vigilance during 77 hours of sleep deprivation. Int J Neurosci. 2008;118(9):1207-25.
  • 56 Lima MM, Andersen ML, Reksidler AB, Ferraz AC, Vital MA, Tufik S. Paradoxical sleep deprivation modulates tyrosine hydroxylase expression in the nigrostriatal pathway and attenuates motor deficits induced by dopaminergic depletion. CNS Neurol Disord Drug Targets. 2012;11(4):359-68.
  • 57 Tillerson JL, Caudle WM, Parent JM, Gong C, Schallert T, Miller GW. Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behav Brain Res. 2006;172(1):97-105.
  • 58 O’Connor S, Jacob TJ. Neuropharmacology of the olfactory bulb. Curr Mol Pharmacol. 2008;1(3):181-90.
  • 59 Coopersmith R, Weihmuller FB, Kirstein CL, Marshall JF, Leon M. Extracellular dopamine increases in the neonatal olfactory bulb during odor preference training. Brain Res. 1991;564(1):149-53.