Hamostaseologie 2017; 37(01): 59-72
DOI: 10.5482/HAMO-16-06-0018
State of the art
Schattauer GmbH

Von Willebrand factor processing

Von-Willebrand-Faktor-Prozessierung
Maria A. Brehm
1   Pädiatrische Hämatologie und Onkologie, Universitatsklinikum Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations
Further Information

Publication History

received: 29 June 2016

accepted in revised form: 03 November 2016

Publication Date:
28 December 2017 (online)

Summary

Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF’s function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.

Zusammenfassung

Der von-Willebrand-Faktor (VWF) spielt eine zentrale Rolle in der primären Hämostase. Grundvoraussetzung hierfür ist seine multimere Struktur, die die effiziente Rekrutierung von Thrombozyten an die verletzte Gefäßwand ermöglicht. Die einzelnen Schritte der VWF-Multimersynthese bestehen aus verschiedenen posttranslationalen Modifikationen, die nacheinander bei bestimmten pH-Bedingungen ablaufen müssen. Deshalb finden sie in unterschiedlichen Zellorganellen statt. Zunächst werden die VWF-Monomere im endoplasmatischen Retikulum zu Dimeren verknüpft und vorglykolisiert. Im Golgi-Apparat werden diese zu Multimeren zusammengefügt, die nach abgeschlossener Modifikation mehr als 300 komplexe Zuckerstrukturen tragen, welche durch Sialylierung, Sulfonierung und mit Blutgruppenantigenen funktionalisiert wurden. Von besonderer Wichtigkeit ist die sequenzielle Ausbildung von Disulfidbrücken, die verschiedene Aufgaben in der Strukturgebung der VWF-Multimere besitzen. Die Multimere werden spiralisiert, gelagert und nach Sekretion weiter modifiziert. Dieser Artikel liefert einen detaillierten Überblick über diese Prozesse, inklusive Grundlageninformationen zu den biochemischen Reaktionen.

 
  • References

  • 1 Casari C, Lenting PJ, Wohner N. et al. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 (Suppl. 01) 202-211.
  • 2 Spiel AO, Gilbert JC, Jilma B. Von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation 2008; 117 (11) 1449-1459.
  • 3 Takahashi M, Yamashita A, Moriguchi-Goto S. et al. Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histol Histopathol 2009; 24 (11) 1391-1398.
  • 4 Kleinschnitz C, De Meyer SF, Schwarz T. et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 2009; 113 (15) 3600-3603.
  • 5 Nieswandt B, Stoll G. The smaller, the better: VWF in stroke. Blood 2010; 115 (08) 1477-1478.
  • 6 Zhao BQ, Chauhan AK, Canault M. et al. Von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114 (15) 3329-3334.
  • 7 Starke RD, Ferraro F, Paschalaki KE. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 2011; 117 (03) 1071-1080.
  • 8 Bosmans JM, Kockx MM, Vrints CJ. et al. Fibrin(ogen) and von Willebrand factor deposition are associated with intimal thickening after balloon angioplasty of the rabbit carotid artery. Arterioscler Thromb Vasc Biol 1997; 17 (04) 634-645.
  • 9 Qin F, Impeduglia T, Schaffer P, Dardik H. Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: preliminary studies. J Vasc Surg 2003; 37 (02) 433-439.
  • 10 Bernardo A, Ball C, Nolasco L. et al. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 03 (03) 562-570.
  • 11 Denis CV, Andre P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci USA 2001; 98 (07) 4072-4077.
  • 12 Petri B, Broermann A, Li H. et al. von Willebrand factor promotes leukocyte extravasation. Blood 2010; 116 (22) 4712-4719.
  • 13 Li S, Wang Z, Liao Y. et al. The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. J Thromb Haemost 2010; 08 (02) 341-350.
  • 14 Shahbazi S, Lenting PJ, Fribourg C. et al. Characterisation of the interaction between von Willebrand factor and osteoprotegerin. J Thromb Haemost 2007; 05 (09) 1956-1962.
  • 15 Baud’huin M, Duplomb L, Teletchea S. et al. Factor VIII-von Willebrand factor complex inhibits osteoclastogenesis and controls cell survival. J Biol Chem 2009; 284 (46) 31704-31713.
  • 16 Nyathi Y, Wilkinson BM, Pool MR. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 2013; 1833 (11) 2392-2402.
  • 17 Zhou YF, Eng ET, Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120 (02) 449-458.
  • 18 Miseta A, Csutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 2000; 17 (08) 1232-1239.
  • 19 Shapiro SE, Nowak AA, Wooding C. et al. The von Willebrand factor predicted unpaired cysteines are essential for secretion. J Thromb Haemost 2014; 12 (02) 246-254.
  • 20 Kim YE, Hipp MS, Bracher A. et al. Molecular chaperone functions in protein folding and proteostasis. Ann Rev Biochem 2013; 82: 323-355.
  • 21 Kornfeld R, Kornfeld S. Assembly of asparaginelinked oligosaccharides. Ann Rev Biochem 1985; 54: 631-664.
  • 22 McKinnon TA, Goode EC, Birdsey GM. et al. Specific N-linked glycosylation sites modulate synthesis and secretion of von Willebrand factor. Blood 2010; 116 (04) 640-648.
  • 23 Canis K, McKinnon TA, Nowak A. et al. Mapping the N-glycome of human von Willebrand factor. Biochem J 2012; 447 (02) 217-228.
  • 24 Solecka BA, Weise C, Laffan MA, Kannicht C. Sitespecific analysis of von Willebrand factor O-glycosylation. J Thromb Haemost 2016; 14 (04) 733-746.
  • 25 Moremen KW, Trimble RB, Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiol 1994; 04 (02) 113-125.
  • 26 Spiro RG, Zhu Q, Bhoyroo V, Soling HD. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 1996; 271 (19) 11588-11594.
  • 27 Ware FE, Vassilakos A, Peterson PA. et al. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995; 270 (09) 4697-4704.
  • 28 Oliver JD, van der Wal FJ, Bulleid NJ, High S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 1997; 275 (5296): 86-88.
  • 29 Allen S, Goodeve AC, Peake IR, Daly ME. Endoplasmic reticulum retention and prolonged association of a von Willebrand’s disease-causing von Willebrand factor variant with ERp57 and calnexin. Biochem Biophys Res Commun 2001; 280 (02) 448-453.
  • 30 Katsumi A, Tuley EA, Bodo I, Sadler JE. Localisation of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem 2000; 275 (33) 25585-25594.
  • 31 Zhou YF, Springer TA. Highly reinforced structure of a C-terminal dimerisation domain in von Willebrand factor. Blood 2014; 123 (12) 1785-1793.
  • 32 Purvis AR, Gross J, Dang LT. et al. Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi. Proc Natl Acad Sci USA 2007; 104 (40) 15647-15652.
  • 33 Dong Z, Thoma RS, Crimmins DL. et al. Disulfide bonds required to assemble functional von Willebrand factor multimers. J Biol Chem 1994; 269 (09) 6753-6758.
  • 34 Marti T, Rosselet SJ, Titani K, Walsh KA. Identification of disulfide-bridged substructures within human von Willebrand factor. Biochem 1987; 26 (25) 8099-8109.
  • 35 Lippok S, Kolsek K, Lof A. et al. von Willebrand factor is dimerized by protein disulfide isomerase. Blood 2016; 127 (09) 1183-1191.
  • 36 Obser T, Ledford-Kraemer M, Oyen F. et al. Identification and characterisation of the elusive mutation causing the historical von Willebrand Disease type IIC Miami. J Thromb Haemost 2016; 14 (09) 1725-1735.
  • 37 Purvis AR, Sadler JE. A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerisation. J Biol Chem 2004; 279 (48) 49982-49988.
  • 38 McGrath RT, McKinnon TA, Byrne B. et al. Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. Blood 2010; 115 (13) 2666-2673.
  • 39 Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998; 33 (03) 151-208.
  • 40 Brockhausen I, Schachter H, Stanley P. Essentials of glycobiology. In: O-GalNAc Glycans. Varki ACRD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. (eds). New York: Cold Spring Harbor Laboratory Press; 2009
  • 41 Dall’Olio F. The sialyl-alpha2,6-lactosaminylstructure: biosynthesis and functional role. Glycoconjugate J 2000; 17 (10) 669-676.
  • 42 Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem 1992; 267 (13) 8723-8731.
  • 43 Titani K, Kumar S, Takio K. et al. Amino acid sequence of human von Willebrand factor. Biochem 1986; 25 (11) 3171-3184.
  • 44 Samor B, Mazurier C, Goudemand M. et al. Preliminary results on the carbohydrate moiety of factor VIII/von Willebrand factor (FVIII/vWf). Throm Res 1982; 25 (1-2): 81-89.
  • 45 Samor B, Michalski JC, Mazurier C. et al. Primary structure of the major O-glycosidically linked carbohydrate unit of human von Willebrand factor. Glycoconjugate J 1989; 06 (03) 263-270.
  • 46 Canis K, McKinnon TA, Nowak A. et al. The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs. J Thromb Haemost 2010; 08 (01) 137-145.
  • 47 Baumann E. Ueber Sulfosäuren im Harn. Berichte der deutschen chemischen Gesellschaft 1876; 09 (01) 54-58.
  • 48 Robbins PW, Lipmann F. Identification of Enzymatically Active Sulfate as Adenosine-3’-Phosphate-5’-Phosphosulfate. J Am Chem Soc 1956; 78 (11) 2652-2653.
  • 49 Chapman E, Best MD, Hanson SR, Wong CH. Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 2004; 43 (27) 3526-3548.
  • 50 Carew JA, Browning PJ, Lynch DC. Sulfation of von Willebrand factor. Blood 1990; 76 (12) 2530-2539.
  • 51 Mayadas TN, Wagner DD. In vitro multimerisation of von Willebrand factor is triggered by low pH. Importance of the propolypeptide and free sulfhydryls. J Biol Chem 1989; 264 (23) 13497-13503.
  • 52 Dang LT, Purvis AR, Huang RH. et al. Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerisation of von Willebrand factor. J Biol Chem 2011; 286 (29) 25763-25769.
  • 53 Lippok S, Obser T, Müller JP. et al. Exponential size distribution of von Willebrand factor. Biophys J 2013; 105 (05) 1208-1216.
  • 54 Rehemtulla A, Kaufman RJ. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood 1992; 79 (09) 2349-2355.
  • 55 Wise RJ, Barr PJ, Wong PA. et al. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 1990; 87 (23) 9378-9382.
  • 56 Vischer UM, Wagner DD. von Willebrand factor proteolytic processing and multimerisation precede the formation of Weibel-Palade bodies. Blood 1994; 83 (12) 3536-3544.
  • 57 Zenner HL, Collinson LM, Michaux G, Cutler DF. High-pressure freezing provides insights into Weibel-Palade body biogenesis. J Cell Sci 2007; 120 (12) 2117-2125.
  • 58 Huang RH, Wang Y, Roth R. et al. Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc Natl Acad Sci USA 2008; 105 (02) 482-487.
  • 59 Michaux G, Abbitt KB, Collinson LM. et al. The physiological function of von Willebrand’s factor depends on its tubular storage in endothelial Weibel-Palade bodies. Develop Cell 2006; 10 (02) 223-232.
  • 60 Zhou YF, Eng ET, Nishida N. et al. A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO J 2011; 30 (19) 4098-4111.
  • 61 Mourik MJ, Faas FG, Zimmermann H. et al. Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus. Blood 2015; 125 (22) 3509-3516.
  • 62 Lui-Roberts WW, Collinson LM, Hewlett LJ. et al. An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells. J Cell Biol 2005; 170 (04) 627-636.
  • 63 Ferraro F, Kriston-Vizi J, Metcalf DJ. et al. A twotier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Develop Cell 2014; 29 (03) 292-304.
  • 64 Valentijn KM, Valentijn JA, Jansen KA, Koster AJ. A new look at Weibel-Palade body structure in endothelial cells using electron tomography. J Struct Biol 2008; 161 (03) 447-458.
  • 65 Lui-Roberts WW, Ferraro F, Nightingale TD, Cutler DF. Aftiphilin and gamma-synergin are required for secretagogue sensitivity of Weibel-Palade bodies in endothelial cells. Mol Biol Cell 2008; 19 (12) 5072-5081.
  • 66 Erent M, Meli A, Moisoi N. et al. Rate, extent and concentration dependence of histamine-evoked Weibel-Palade body exocytosis determined from individual fusion events in human endothelial cells. J Physiol 2007; 583 (01) 195-212.
  • 67 Valentijn KM, Sadler JE, Valentijn JA. et al. Functional architecture of Weibel-Palade bodies. Blood 2011; 117 (19) 5033-5043.
  • 68 Rondaij MG, Bierings R, Kragt A. et al. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26 (05) 1002-1007.
  • 69 Babich V, Meli A, Knipe L. et al. Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 2008; 111 (11) 5282-5290.
  • 70 Nightingale TD, White IJ, Doyle EL. et al. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. J Cell Biol 2011; 194 (04) 613-629.
  • 71 Valentijn KM, van Driel LF, Mourik MJ. et al. Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 2010; 116 (10) 1807-1816.
  • 72 Lenting PJ, Christophe OD, Denis CV. Von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 2015; 125 (13) 2019-2028.
  • 73 Giblin JP, Hewlett LJ, Hannah MJ. Basal secretion of von Willebrand factor from human endothelial cells. Blood 2008; 112 (04) 957-964.
  • 74 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46 (02) 185-190.
  • 75 Tsai HM, Nagel RL, Hatcher VB. et al. The high molecular weight form of endothelial cell von Willebrand factor is released by the regulated pathway. Brit J Haematol 1991; 79 (02) 239-245.
  • 76 Lopes Mda Silva, Cutler DF. Von Willebrand factor multimerisation and the polarity of secretory pathways in endothelial cells. Blood 2016; 128 (02) 277-285.
  • 77 Hop C, Fontijn R, van Mourik JA, Pannekoek H. Polarity of constitutive and regulated von Willebrand factor secretion by transfected MDCK-II cells. Exp Cell Res 1997; 230 (02) 352-361.
  • 78 Narahara N, Enden T, Wiiger M, Prydz H. Polar expression of tissue factor in human umbilical vein endothelial cells. Arterioscler Thromb 1994; 14 (11) 1815-1820.
  • 79 Schneider SW, Nuschele S, Wixforth A. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 2007; 104 (19) 7899-7903.
  • 80 Bouwens EA, Mourik MJ, van den Biggelaar M. et al. Factor VIII alters tubular organisation and functional properties of von Willebrand factor stored in Weibel-Palade bodies. Blood 2011; 118 (22) 5947-5956.
  • 81 Mourik MJ, Valentijn JA, Voorberg J. et al. Von Willebrand factor remodeling during exocytosis from vascular endothelial cells. J Thromb Haemost 2013; 11 (11) 2009-2019.
  • 82 Huang J, Roth R, Heuser JE, Sadler JE. Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings under fluid shear stress. Blood 2009; 113 (07) 1589-1597.
  • 83 Padilla A, Moake JL, Bernardo A. et al. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood 2004; 103 (06) 2150-2156.
  • 84 Ruggeri ZM, Orje JN, Habermann R. et al. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108 (06) 1903-1910.
  • 85 Chen H, Fallah MA, Huck V. et al. Blood-clottinginspired reversible polymer-colloid composite assembly in flow. Nature Com 2013; 04: 1333.
  • 86 Kragh T, Napoleone M, Fallah MA. et al. High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13. Thromb Res 2014; 133 (06) 1079-1087.
  • 87 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98 (06) 1662-1666.
  • 88 Gerritsen HE, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98 (06) 1654-1661.
  • 89 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594.
  • 90 Furlan M, Robles R, Solenthaler M. et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1997; 89 (09) 3097-3103.
  • 91 Matsumoto M, Kokame K, Soejima K. et al. Molecular characterisation of ADAMTS13 gene mutations in Japanese patients with Upshaw-Schulman syndrome. Blood 2004; 103 (04) 1305-1310.
  • 92 Uchida T, Wada H, Mizutani M. et al. Identification of novel mutations in ADAMTS13 in an adult patient with congenital thrombotic thrombocytopenic purpura. Blood 2004; 104 (07) 2081-2083.
  • 93 O’Regan N, Gegenbauer K, O’Sullivan JM. et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood 2016; 127 (09) 1192-1201.
  • 94 de Mast Q, Groot E, Asih PB. et al. ADAMTS13 deficiency with elevated levels of ultra-large and active von Willebrand factor in P. falciparum and P. vivax malaria. Am J Trop Med Hyg 2009; 80 (03) 492-498.
  • 95 Nolasco LH, Turner NA, Bernardo A. et al. Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood 2005; 106 (13) 4199-4209.
  • 96 Bauer AT, Suckau J, Frank K. et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125 (20) 3153-3163.
  • 97 Ganderton T, Wong JW, Schroeder C, Hogg PJ. Lateral self-association of VWF involves the Cys2431-Cys2453 disulfide/dithiol in the C2 domain. Blood 2011; 118 (19) 5312-5318.
  • 98 Solecka BA, Weise C, Fuchs B, Kannicht C. Free thiol groups in von Willebrand factor (VWF) are required for its full function under physiological flow conditions. Thromb Res 2016; 137: 202-210.
  • 99 Choi H, Aboulfatova K, Pownall HJ. et al. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. J Biol Chem 2007; 282 (49) 35604-35611.
  • 100 Crawley JT, de Groot R, Xiang Y. et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118 (12) 3212-3221.
  • 101 Fu X, Chen J, Gallagher R. et al. Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood 2011; 118 (19) 5283-5291.
  • 102 Sodetz JM, Pizzo SV, McKee PA. Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. J Biol Chem 1977; 252 (15) 5538-5546.
  • 103 Ellies LG, Ditto D, Levy GG. et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of haemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci USA 2002; 99 (15) 10042-10047.
  • 104 Knezevic A, Gornik O, Polasek O. et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiol 2010; 20 (08) 959-969.
  • 105 Piagnerelli M, Boudjeltia KZ, Nuyens V. et al. Rapid alterations in transferrin sialylation during sepsis. Shock 2005; 24 (01) 48-52.
  • 106 Howard MA, Montgomery DC, Hardisty RM. Factor-VIII-related antigen in platelets. Throm Res 1974; 04 (05) 617-624.
  • 107 Nachman RL, Jaffe EA. Subcellular platelet factor VIII antigen and von Willebrand factor. J Exp Med 1975; 141 (05) 1101-1113.
  • 108 Zucker MB, Broekman MJ, Kaplan KL. Factor VIII-related antigen in human blood platelets: localisation and release by thrombin and collagen. J Lab Clin Med 1979; 94 (05) 675-682.
  • 109 Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76 (03) 1102-1106.
  • 110 Fernandez MF, Ginsberg MH, Ruggeri ZM. et al. Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin-stimulated platelets. Blood 1982; 60 (05) 1132-1138.
  • 111 Ruggeri ZM, Mannucci PM, Lombardi R. et al. Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes. Blood 1982; 59 (06) 1272-1278.
  • 112 Ruggeri ZM, Zimmerman TS. Variant von Willebrand’s disease: characterisation of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest 1980; 65 (06) 1318-1325.
  • 113 McGrath RT, van den Biggelaar M, Byrne B. et al. Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. Blood 2013; 122 (25) 4107-4110.
  • 114 Wandall HH, Rumjantseva V, Sorensen AL. et al. The origin and function of platelet glycosyltransferases. Blood 2012; 120 (03) 626-635.
  • 115 Williams SB, McKeown LP, Krutzsch H. et al. Purification and characterisation of human platelet von Willebrand factor. Brit J Haematol 1994; 88 (03) 582-591.
  • 116 Shi Q, Wilcox DA, Fahs SA. et al. Expression of human factor VIII under control of the plateletspecific alphaIIb promoter in megakaryocytic cell line as well as storage together with VWF. Mol Gen Metabol 2003; 79 (01) 25-33.
  • 117 Wilcox DA, Shi Q, Nurden P, Haberichter SL. et al. Induction of megakaryocytes to synthesize and store a releasable pool of human factor VIII. J Thromb Haemost 2003; 01 (12) 2477-2489.
  • 118 Shi Q, Wilcox DA, Fahs SA. et al. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J Clin Invest 2006; 116 (07) 1974-1982.
  • 119 Yarovoi H, Nurden AT, Montgomery RR. et al. Intracellular interaction of von Willebrand factor and factor VIII depends on cellular context: lessons from platelet-expressed factor VIII. Blood 2005; 105 (12) 4674-4676.
  • 120 Turecek PL, Mitterer A, Matthiessen HP. et al. Development of a plasmaand albumin-free recombinant von Willebrand factor. Hamostaseol 2009; 29 (Suppl. 01) S32-38.
  • 121 Gill JC, Castaman G, Windyga J. et al. Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease. Blood 2015; 126 (17) 2038-2046.
  • 122 Mannucci PM, Kempton C, Millar C. et al. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood 2013; 122 (05) 648-657.
  • 123 Eikenboom J, Hilbert L, Ribba AS. et al. Expression of 14 von Willebrand factor mutations identified in patients with type 1 von Willebrand disease from the MCMDM-1VWD study. J Thromb Haemost 2009; 07 (08) 1304-1312.
  • 124 Brehm MA, Huck V, Aponte-Santamaria C. et al. von Willebrand disease type 2A phenotypes IIC, IID and IIE: A day in the life of shear-stressed mutant von Willebrand factor. Thromb Haemost 2014; 112 (01) 96-108.
  • 125 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerisation of von Willebrand factor subunits due to a Cys-> Arg mutation in type IID von Willebrand disease. Proc Natl Acad Sci USA 1996; 93 (08) 3581-3586.
  • 126 Enayat MS, Guilliatt AM, Surdhar GK. et al. Aberrant dimerisation of von Willebrand factor as the result of mutations in the carboxy-terminal region: identification of 3 mutations in members of 3 different families with type 2A (phenotype IID) von Willebrand disease. Blood 2001; 98 (03) 674-680.
  • 127 Schneppenheim R, Michiels JJ, Obser T. et al. A cluster of mutations in the D3 domain of von Willebrand factor correlates with a distinct subgroup of von Willebrand disease: type 2A/IIE. Blood 2010; 115 (23) 4894-4901.
  • 128 Enayat MS, Ravanbod S, Rassoulzadegan M. et al. Identification of a homozygous Cys410Ser mutation in the von Willebrand factor D2 domain causing type 2A(IIC) von Willebrand disease phenotype in an Iranian patient. Haemophilia 2013; 19 (04) e261-e264.
  • 129 Schneppenheim R, Thomas KB, Krey S. et al. Identification of a candidate missense mutation in a family with von Willebrand disease type IIC. Hum Gen 1995; 95 (06) 681-686.
  • 130 Gaucher C, Uno H, Yamazaki T. et al. A new candidate mutation (N528S) within the von Willebrand factor propeptide identified in a Japanese patient with phenotype IIC of von Willebrand disease. Eur J Haematol 1998; 61 (02) 145-148.
  • 131 Lanke E, Kristoffersson AC, Philips M, Holmberg L, Lethagen S. Characterisation of a novel mutation in the von Willebrand factor propeptide in a distinct subtype of recessive von Willebrand disease. ThrombHaemost 2008; 100 (02) 211-216.
  • 132 Gaucher C, Dieval J, Mazurier C. Characterisation of von Willebrand factor gene defects in two unrelated patients with type IIC von Willebrand disease. Blood 1994; 84 (04) 1024-1030.
  • 133 O’Brien LA, Sutherland JJ, Hegadorn C. et al. A novel type 2A (Group II) von Willebrand disease mutation (L1503Q) associated with loss of the highest molecular weight von Willebrand factor multimers. J Thromb Haemost 2004; 02 (07) 1135-1142.
  • 134 Lyons SE, Bruck ME, Bowie EJ, Ginsburg D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J Biol Chem 1992; 267 (07) 4424-4430.
  • 135 Hassenpflug WA, Budde U, Obser T. et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood 2006; 107 (06) 2339-2345.
  • 136 Allen S, Abuzenadah AM, Hinks J. et al. A novel von Willebrand disease-causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerisation and secretion. Blood 2000; 96 (02) 560-568.
  • 137 Schneppenheim R, Krey S, Bergmann F. et al. Genetic heterogeneity of severe von Willebrand disease type III in the German population. Hum Gen 1994; 94 (06) 640-652.
  • 138 Schneppenheim R, Budde U, Obser T. et al. Expression and characterisation of von Willebrand factor dimerisation defects in different types of von Willebrand disease. Blood 2001; 97 (07) 2059-2066.
  • 139 Zhang ZP, Blomback M, Egberg N. et al. Characterisation of the von Willebrand factor gene (VWF) in von Willebrand disease type III patients from 24 families of Swedish and Finnish origin. Genomics 1994; 21 (01) 188-193.
  • 140 Lenting PJ, Casari C, Christophe OD, Denis CV. Von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10 (12) 2428-2437.
  • 141 Grassle S, Huck V, Pappelbaum KI. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 2014; 34 (07) 1382-1389.
  • 142 Wagner DD. Cell biology of von Willebrand factor. Ann Rev Cell Biol 1990; 06: 217-246.
  • 143 Schneppenheim R, Budde U. Von Willebrand factor: the complex molecular genetics of a multidomain and multifunctional protein. J Thromb Haemost 2011; 09 (Suppl. 01) 209-215.
  • 144 Flood VH, Schlauderaff AC, Haberichter SL. et al. Crucial role for the VWF A1 domain in binding to type IV collagen. Blood 2015; 125 (14) 2297-2304.
  • 145 Michaux G, Pullen TJ, Haberichter SL, Cutler DF. P-selectin binds to the D’-D3 domains of von Willebrand factor in Weibel-Palade bodies. Blood 2006; 107 (10) 3922-3924.
  • 146 Beacham DA, Wise RJ, Turci SM, Handin RI. Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis. J Biol Chem 1992; 267 (05) 3409-3415.
  • 147 Pendu R, Terraube V, Christophe OD. et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 2006; 108 (12) 3746-3752.
  • 148 Xie L, Chesterman CN, Hogg PJ. Control of von Willebrand factor multimer size by thrombospondin-1. J Exp Med 2001; 193 (12) 1341-1349.
  • 149 van Breevoort D, van Agtmaal EL, Dragt BS. et al. Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J Prot Res 2012; 11 (05) 2925-2936.
  • 150 Keuren JF, Baruch D, Legendre P. et al. Von Willebrand factor C1C2 domain is involved in platelet adhesion to polymerized fibrin at high shear rate. Blood 2004; 103 (05) 1741-1746.
  • 151 Pi L, Shenoy AK, Liu J. et al. CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J 2012; 26 (08) 3365-3379.