Hamostaseologie 2015; 35(04): 303-310
DOI: 10.5482/HAMO-14-10-0050
Review
Schattauer GmbH

What drives “fibrinolysis”?

Was treibt die “Fibrinolyse” an?
R. L. Medcalf
1   Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
› Author Affiliations
Further Information

Publication History

received: 14 October 2014

accepted in revised form: 15 January 2014

Publication Date:
28 December 2017 (online)

Summary

The timely removal of blood clots and fibrin deposits is essential in the regulation of haemostasis. This is achieved by the fibrinolytic system, an enzymatic process that regulates the activation of plasminogen into its proteolytic form, plasmin. This is a self-regulated event as the very presence of fibrin initiates plasminogen activation on the fibrin surface due to the presentation of exposed C-terminal lysine residues in fibrin that allow plasminogen to position itself via its lysine binding sites and to be more efficiently cleaved by tissue-type plasminogen activator (t-PA). Hence fibrin, the ultimate substrate of plasmin during fibrinolysis, is indeed an essential cofactor in the cascade. What has now come to light is that the fibrinolytic system is not solely designed to eliminate fibrin. Indeed, it is a broad acting system that processes a variety of proteins, including many in the brain where there is no fibrin. So what drives t-PA-mediated plasminogen activation when fibrin is not available?

This review will describe the broadening role of the fibrinolytic system highlighting the importance of fibrin and other key proteins as facilitators during t-PA-mediated plasminogen activation.

Zusammenfassung

Die rechtzeitige Auflösung von Blutgerinnseln und Fibrinablagerungen trägt maßgeblich zur Regulierung der Hämostase bei. Erreicht wird dies durch das fibrinolytische System, einen enzymatischem Prozess, der die Aktivierung von Plasminogen zu seiner proteolytischen Form Plasmin regelt. Dies ist ein selbst reguliertes Ereignis, insofern die Plasminogen-Aktivierung auf der Fibrinoberfläche alleine durch die Anwesenheit von Fibrin, aufgrund der Präsentation von exponierten C-terminalen Lysinresten im Fibrin, ausgelöst wird; an diesen kann sich Plasminogen über seine Lysinbindungsstellen selbst anlagern und wirksamer durch den gewebespezifischen Plasminogen-Aktivator (tPA) gespalten werden. Somit ist Fibrin, das letzte Substrat des Plasmins im Verlauf der Fibrinolyse, ein wesentlicher Kofaktor in der Kaskade. Wie sich herausstellt, dient das fibrinolytische System nicht nur dazu, Fibrin zu eliminieren. Vielmehr ist es ein umfassend wirkendes System, das eine Reihe von Proteinen verarbeitet, darunter viele im Gehirn, wo es kein Fibrin gibt. Wodurch also wird die tPAvermittelte Plasminogenaktivierung vorangetrieben, wenn kein Fibrin verfügbar ist?

In dieser Übersicht beschreiben wir die umfassendere Rolle des fibrinolytischen Systems, wobei wir vor allem die fördernde Bedeutung von Fibrin und anderen Schlüsselproteinen bei der tPA-vermittelten Plasminogen-Aktivierung beleuchten.

 
  • References

  • 1 Dastre A. Arch Physiol. 1893; 05: 661.
  • 2 Macfarlane RG, Pilling J. Observations on fibrinolysis; plasminogen, plasmin, and antiplasmin content of human blood. Lancet 1946; 02: 562-565.
  • 3 Barker BI. The enzymes of fibrin. J Exp Med 1908; 10: 343-53.
  • 4 Rulot H. Arch Intern de Physiol. 1904; i: 152.
  • 5 Garner RL, Tillett WS. Biochemical studies on the fibrinolytic activity of hemolytic Streptococci: I. Isolation and characterization of fibrinolysin. J Exp Med 1934; 60: 239-254.
  • 6 Tillett WS, Garner RL. The fibrinolytic activity of hemolytic Streptococci. J Exp Med 1933; 58: 485-502.
  • 7 Christensen LR, Macleod CM. A proteolytic enzyme of serum: Characterization, activation, and reaction with inhibitors. J General Physiol 1945; 28: 559-583.
  • 8 Christensen LR. Streptococcal fibrinolysis: A proteolytic reaction due to a serum enzyme activated by streptococcal fibrinolysin. J General Physiol 1945; 28: 363-383.
  • 9 Delezene C, Pozerski E. 690. CR Soc Biol Paris 1903; 55: 327.
  • 10 Macfarlane RG, Biggs R. Fibrinolysis; its mechanism and significance. Blood 1948; 03: 1167-1187.
  • 11 Astrup T, Permin PM. Fibrinolysis in the animal organism. Nature 1947; 159: 681.
  • 12 Sobel GW, Mohler SR, Jones NW. et al. Urokinase: an activator of plasma profibrinolysin extracted from urine. Am J Physiol 1952; 171: 768-769.
  • 13 Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129: 307-321.
  • 14 Medcalf RL. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 2007; 05 (Suppl. 01) 132-142.
  • 15 Law RH, Caradoc-Davies T, Cowieson N. et al. The X-ray crystal structure of full-length human plasminogen. Cell reports 2012; 01: 185-190.
  • 16 Loskutoff DJ, van Mourik JA, Erickson LA, Lawrence D. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc Natl Acad Sci USA 1983; 80: 2956-2960.
  • 17 Coleman PL, Barouski PA, Gelehrter TD. The dexamethasone-induced inhibitor of fibrinolytic activity in hepatoma cells. A cellular product which specifically inhibits plasminogen activation. J Biol Chem 1982; 257: 4260-4264.
  • 18 Kawano T, Morimoto K, Uemura Y. Partial purification and properties of urokinase inhibitor from human placenta. J Biochem 1970; 67: 333-342.
  • 19 Collen D, Wiman B. Turnover of antiplasmin, the fast-acting plasmin inhibitor of plasma. Blood 1979; 53: 313-324.
  • 20 Ellis V. The Plasminogen Activation System in Normal Tissue Remodeling. In: Behrendt N. (ed). Matrix Proteases in Health and Disease: O-BK Wiley; 2012: 25-55.
  • 21 Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270: 14477-14484.
  • 22 Nesheim M, Bajzar L. The discovery of TAFI. J Thromb Haemost 2005; 03: 2139-2146.
  • 23 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombinthrombomodulin complex. J Biol Chem 1996; 271: 16603-16608.
  • 24 Dano K, Andreasen PA, Grondahl-Hansen J. et al. Plasminogen activators, tissue degradation, and cancer. Advances in cancer research 1985; 44: 139-266.
  • 25 Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost 2013; 39: 329-337.
  • 26 Vassalli JD, Baccino D, Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol 1985; 100: 86-92.
  • 27 Orth K, Madison EL, Gething MJ. et al. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Proc Natl Acad Sci USA 1992; 89: 7422-7426.
  • 28 Ellis V, Whawell SA. Vascular smooth muscle cells potentiate plasmin generation by both urokinase and tissue plasminogen activator-dependent mechanisms: evidence for a specific tissue-type plasminogen activator receptor on these cells. Blood 1997; 90: 2312-2322.
  • 29 Dassah M, Deora AB, He K, Hajjar KA. The endothelial cell annexin A2 system and vascular fibrinolysis. Gen Physiol Biophys 2009; 28: F20-F28.
  • 30 Ploplis VA, French EL, Carmeliet P. et al. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 1998; 91: 2005-2009.
  • 31 Shen Y, Guo Y, Mikus P. et al. Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds. Blood 2012; 119: 5879-5887.
  • 32 Ploplis VA, Castellino FJ. Nonfibrinolytic functions of plasminogen. Methods 2000; 21: 103-110.
  • 33 NINDS. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-1587.
  • 34 Lees KR, Bluhmki E, von Kummer R. et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375: 1695-1703.
  • 35 Yurka HG, Wissler RN, Zanghi CN. et al. The effective concentration of epsilon-aminocaproic Acid for inhibition of fibrinolysis in neonatal plasma in vitro. Anesth Analg 2010; 111: 180-184.
  • 36 McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 2012; 72: 585-617.
  • 37 Draxler DFMRL. The fibrinolytic system - More than fibrinolysis?. Transfusion Med Rev. 2014 in press.
  • 38 Carmeliet P, Schoonjans L, Kieckens L. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419-424.
  • 39 Samson AL, Medcalf RL. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 2006; 50: 673-678.
  • 40 Yepes M, Lawrence DA. New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med 2004; 229: 1097-1104.
  • 41 Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost 2005; 93: 655-660.
  • 42 Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995; 377: 340-344.
  • 43 Baranes D, Lederfein D, Huang YY. et al. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 1998; 21: 813-825.
  • 44 Pawlak R, Rao BS, Melchor JP. et al. Tissue plasminogen activator and plasminogen mediate stressinduced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci USA 2005; 102: 18201-18206.
  • 45 Pang PT, Teng HK, Zaitsev E. et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306: 487-491.
  • 46 Pawlak R, Melchor JP, Matys T. et al. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci USA 2005; 102: 443-448.
  • 47 Bahi A, Kusnecov A, Dreyer JL. The role of tissuetype plasminogen activator system in amphetamine-induced conditional place preference extinction and reinstatement. Neuropsychopharmacology 2008; 33: 2726-2734.
  • 48 Maiya R, Zhou Y, Norris EH. et al. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci USA 2009; 106: 1983-1988.
  • 49 Nagai T, Yamada K, Yoshimura M. et al. The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci USA 2004; 101: 3650-3655.
  • 50 Muller CM, Griesinger CB. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex. Nat Neurosci 1998; 01: 47-53.
  • 51 Nicole O, Docagne F, Ali C. et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Medicine 2001; 07: 59-64.
  • 52 Samson AL, Nevin ST, Croucher D. et al. Tissuetype plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 2008; 107: 1091-1101.
  • 53 Pothakos K, Robinson JK, Gravanis I. et al. Decreased serotonin levels associated with behavioral disinhibition in tissue plasminogen activator deficient (tPA-/-) mice. Brain Res 2010; 1326: 135-142.
  • 54 Liberatore GT, Samson A, Bladin C. et al. Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke 2003; 34: 537-543.
  • 55 Nagai N, Zhao BQ, Suzuki Y. et al. Tissue-type plasminogen activator has paradoxical roles in focal cerebral ischemic injury by thrombotic middle cerebral artery occlusion with mild or severe photochemical damage in mice. J Cereb Blood Flow Metab 2002; 22: 648-651.
  • 56 Mori T, Wang X, Kline AE. et al. Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. NeuroReport 2001; 12: 4117-4120.
  • 57 Sashindranath M, Sales E, Daglas M. et al. The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain 2012; 135: 3251-3264.
  • 58 Sashindranath M, Samson AL, Downes CE. et al. Compartmentand context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab Invest 2011; 91: 1079-1091.
  • 59 Basham ME, Seeds NW. Plasminogen expression in the neonatal and adult mouse brain. J Neurochem 2001; 77: 318-325.
  • 60 Taniguchi Y, Inoue N, Morita S. et al. Localization of plasminogen in mouse hippocampus, cerebral cortex, and hypothalamus. Cell and tissue research 2011; 343: 303-317.
  • 61 Berger P, Kozlov SV, Krueger SR, Sonderegger P. Structure of the mouse gene for the serine protease inhibitor neuroserpin (PI12). Gene 1998; 214: 25-33.
  • 62 Hastings GA, Coleman TA, Haudenschild CC. et al. Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J Biol Chem 1997; 272: 33062-33067.
  • 63 Kawashita E, Kanno Y, Asayama H. et al. Involvement of alpha2-antiplasmin in dendritic growth of hippocampal neurons. J Neurochem 2013; 126: 58-69.
  • 64 Kawashita E, Kanno Y, Ikeda K. et al. Altered behavior in mice with deletion of the alpha2-antiplasmin gene. PloS one 2014; 09: e97947.
  • 65 Kim YH, Park JH, Hong SH, Koh JY. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 1999; 284: 647-650.
  • 66 Echeverry R, Wu J, Haile WB. et al. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest 2010; 120: 2194-2205.
  • 67 Wu F, Wu J, Nicholson AD. et al. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci 2012; 32: 9848-9858.
  • 68 Yepes M, Sandkvist M, Moore EG. et al. Tissuetype plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112: 1533-1540.
  • 69 Schielke GLDA. Plasminogen Activators in Ischemic Stroke. Matrix Proteases in Health and Disease: Wiley-VCH. 2012
  • 70 Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis?. J Cereb Blood Flow Metab 2014; 34: 1283-1296.
  • 71 Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 1997; 91: 917-925.
  • 72 Baron A, Hommet Y, Casse F, Vivien D. Tissuetype plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Biol Cell 2010; 102: 539-547.
  • 73 Su EJ, Fredriksson L, Geyer M. et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 2008; 14: 731-737.
  • 74 Rogove AD, Siao C, Keyt B. et al. Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci 1999; 112: 4007-4016.
  • 75 Lee HY, Hwang IY, Im H. et al. Non-proteolytic neurotrophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurochem 2007; 101: 1236-1247.
  • 76 Siddiq MM, Tsirka SE. Modulation of zinc toxicity by tissue plasminogen activator. Mol Cell Neurosci 2004; 25: 162-171.
  • 77 Gebbink MF, Bouma B, Maas C, Bouma BN. Physiological responses to protein aggregates: fibrinolysis, coagulation and inflammation (new roles for old factors). FEBS Lett 2009; 583: 2691-2699.
  • 78 Ellis V, Daniels M, Misra R, Brown DR. Plasminogen activation is stimulated by prion protein and regulated in a copper-dependent manner. Biochemistry 2002; 41: 6891-6896.
  • 79 Epple G, Schleuning WD, Kettelgerdes G. et al. Prion protein stimulates tissue-type plasminogen activator-mediated plasmin generation via a lysine-binding site on kringle 2. J Thromb Haemost 2004; 02: 962-968.
  • 80 Kranenburg O, Gent YY, Romijn EP. et al. Amyloid-beta-stimulated plasminogen activation by tissue-type plasminogen activator results in processing of neuroendocrine factors. Neuroscience 2005; 131: 877-886.
  • 81 Kruithof EK, Schleuning WD. A comparative study of amyloid-beta (1-42) as a cofactor for plasminogen activation by vampire bat plasminogen activator and recombinant human tissue-type plasminogen activator. Thromb Haemost 2004; 92: 559-567.
  • 82 Kingston IB, Castro MJ, Anderson S. In vitro stimulation of tissue-type plasminogen activator by Alzheimer amyloid beta-peptide analogues. Nat Med 1995; 01: 138-142.
  • 83 Bobbink IW, Tekelenburg WL, Sixma JJ. et al. Glycated proteins modulate tissue-plasminogen activator-catalyzed plasminogen activation. Biochem Biophys Res Commun 1997; 240: 595-601.
  • 84 O’Mullane MJ, Baker MS. Loss of cell viability dramatically elevates cell surface plasminogen binding and activation. Exp Cell Res 1998; 242: 153-164.
  • 85 Maas C, Govers-Riemslag JW, Bouma B. et al. Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118: 3208-3218.
  • 86 Samson AL, Borg RJ, Niego B. et al. A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood 2009; 114: 1937-1946.
  • 87 Wang AY, Shen Y, Wang JT. et al. Animal models of chronic tympanic membrane perforation: in response to plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. Clin Transl Med 2014; 03: 5.
  • 88 Shen Y, Guo Y, Wilczynska M. et al. Plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. J Transl Med 2014; 12: 5.
  • 89 Romer J, Bugge TH, Pyke C. et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 1996; 02: 287-292.
  • 90 Samson AL, Knaupp AS, Sashindranath M. et al. Nucleocytoplasmic coagulation: An injury-induced aggregation event that disulfide crosslinks proteins and facilitates their removal by plasmin. Cell Rep 2012; 02: 889-901.