Hamostaseologie 2015; 35(01): 60-72
DOI: 10.5482/HAMO-14-09-0047
Review
Schattauer GmbH

Analysis of platelet function and dysfunction

Analyse der Thrombozytenfunktion und deren Störungen
K. Jurk
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
› Author Affiliations
Further Information

Publication History

received: 30 September 2014

accepted in revised form: 21 November 2014

Publication Date:
28 December 2017 (online)

Summary

Although platelets act as central players of haemostasis only their cross-talk with other blood cells, plasma factors and the vascular compartment enables the formation of a stable thrombus. Multiple activation processes and complex signalling networks are responsible for appropriate platelet function. Thus, a variety of platelet function tests are available for platelet research and diagnosis of platelet dysfunction. However, universal platelet function tests that are sensitive to all platelet function defects do not exist and therefore diagnostic algorithms for suspected platelet function disorders are still recommended in clinical practice.

Based on the current knowledge of human platelet activation this review evaluates point-of-care related screening tests in comparison with specific platelet function assays and focuses on their diagnostic utility in relation to severity of platelet dysfunction. Further, systems biology-based platelet function methods that integrate global and specific analysis of platelet vessel wall interaction (advanced flow chamber devices) and posttranslational modifications (platelet proteomics) are presented and their diagnostic potential is addressed.

Zusammenfassung

Thrombozyten steuern zentral die Hämostase, aber erst ihr „cross-talk” mit anderen Blutzellen, Plasmafaktoren und dem vaskulären Kompartiment ermöglicht die Bildung eines stabilen Thrombus. Multiple Aktivierungsprozesse sowie komplexe Signalnetzwerke sind für eine normale Thrombozytenfunktion essenziell. Entsprechend existieren vielfältige Thrombozyten- Funktionstests für die Erforschung und Diagnose von Thrombozyten-Funktionsstörungen. Bisher konnten keine universellen Thrombozyten- Funktionstests entwickelt werden, die eine umfassende Detektion von Thrombozyten-Defekten gewährleisten. Daher werden diagnostische Algorithmen bei Verdacht auf Thrombozyten- Funktionsstörung in der klinischen Routine angewendet.

Diese Übersicht evaluiert basierend auf dem aktuellen Verständnis der Aktivierung und Funktion humaner Thrombozyten Point-ofcare- bezogene Screenings im Vergleich zu spezifischen Thrombozyten-Funktionsstests und gibt eine Übersicht über deren diagnostischen Anwendbarkeit bezüglich des Schweregrads der Thrombozyten-Dysfunktion. Dar - über hinaus werden Systembiologie-basierte Methoden und ihr diagnostisches Potenzial vorgestellt, die eine Integration von globalen und spezifischen Analysen der Thrombozyten- Wechselwirkung mit der Gefäßwand (moderne Flusskammersysteme) bzw. Der posttranslationalen Veränderungen von Thrombozytenproteinen (quantitative Proteomanalyse) verfolgen.

 
  • References

  • 1 Knöfler R, Eberl W, Schulze H. et al. Diagnosis of inherited diseases of platelet function. Interdisciplinary s2k guideline of the permanent paediatric committee of the society of thrombosis and haemostasis research (GTH e. V.). Hämostaseologie 2014; 34: 201-212.
  • 2 Jurk K, Kehrel BE. Inherited and acquired disorders of platelet function Transfus Med Hemother. 2007; 34: 6-19.
  • 3 Casini A, Fontana P, Lecompte TP. Thrombotic complications of myeloproliferative neoplasms: Risk assessment and risk-guided management. J Thromb Haemost 2013; 11: 1215-1227.
  • 4 Nangalia J, Massie CE, Baxter EJ. et al. Somatic calr mutations in myeloproliferative neoplasms with nonmutated jak2. N Engl J Med 2013; 369: 2391-2405.
  • 5 Finazzi G, Carobbio A, Thiele J. et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 who criteria. Leukemia 2012; 26: 716-719.
  • 6 Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: The evolving spectrum. Hämostaseologie 2012; 32: 259-270.
  • 7 Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2014; 165: 165-178.
  • 8 Gothwal M, Sandrock-Lang K, Zieger B. Genetics of inherited platelet disorders. Hämostaseologie 2014; 34: 133-141.
  • 9 Gresele P, Harrison P, Bury L. et al. Diagnosis of suspected inherited platelet function disorders: Results of a worldwide survey. J Thromb Haemost 2014; 12: 1562-1569.
  • 10 Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: Glycoprotein vi, gpib-ix-v, and clec-2. J Thromb Haemost 2013; 11 (Suppl. 01) 330-339.
  • 11 Jurk K, Clemetson KJ, de Groot PG. et al. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein ib (gpib): An alternative/ backup mechanism to von Willebrand factor. FASEB J 2003; 17: 1490-1492.
  • 12 Dale GL, Friese P, Batar P. et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002; 415: 175-179.
  • 13 Offermanns S. Activation of platelet function through g protein-coupled receptors. Circ Res 2006; 99: 1293-1304.
  • 14 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 03: 1800-1814.
  • 15 Berndt MC, Andrews RK. Major platelet glycoproteins: Gpib-ix-v. In: Marder VJ, Aird WC, Bennett JS, Schulman S, White II GC. (eds). Hemostasis and thrombosis. 2012: 382-385.
  • 16 Cosemans JM, Iserbyt BF, Deckmyn H, Heemskerk JW. Multiple ways to switch platelet integrins on and off. J Thromb Haemost 2008; 06: 1253-1261.
  • 17 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22: 1381-1389.
  • 18 Varga-Szabo D, Braun A, Nieswandt B. Stim and orai in platelet function. Cell Calcium 2011; 50: 270-278.
  • 19 Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagulation: Different populations, different functions. J Thromb Haemost 2013; 11: 2-16.
  • 20 Wielders SJ, Beguin S, Hemker HC, Lindhout T. Factor xi-dependent reciprocal thrombin generation consolidates blood coagulation when tissue factor is not available. Arterioscler Thromb Vasc Biol 2004; 24: 1138-1142.
  • 21 Jurk K, Lahav J, Van Aken H, Brodde MF. et al. Extracellular protein disulfide isomerase regulates feedback activation of platelet thrombin generation via modulation of coagulation factor binding. J Thromb Haemost 2011; 09: 2278-2290.
  • 22 Essex DW, Li M. Protein disulphide isomerase mediates platelet aggregation and secretion. Br J Haematol 1999; 104: 448-454.
  • 23 Lahav J, Jurk K, Hess O. et al. Sustained integrin ligation involves extracellular free sulfhydryls and enzymatically catalyzed disulfide exchange. Blood 2002; 100: 2472-2478.
  • 24 Bertling A, Niemann S, Hussain M. et al. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler Thromb Vasc Biol 2012; 32: 1979-1990.
  • 25 Thon JN, Peters CG, Machlus KR. et al. T granules in human platelets function in tlr9 organization and signaling. J Cell Biol 2012; 198: 561-574.
  • 26 Morrissey JH, Choi SH, Smith SA. Polyphosphate: An ancient molecule that links platelets, coagulation, and inflammation. Blood 2012; 119: 5972-5979.
  • 27 Stalker TJ, Traxler EA, Wu J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121: 1875-1885.
  • 28 Brass LF, Wannemacher KM, Ma P, Stalker TJ. Regulating thrombus growth and stability to achieve an optimal response to injury. J Thromb Haemost 2011; 09 (Suppl. 01) 66-75.
  • 29 Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013; 112: 1506-1519.
  • 30 Koseoglu S, Flaumenhaft R. Advances in platelet granule biology. Curr Opin Hematol 2013; 20: 464-471.
  • 31 Jurk K, Kehrel BE. Thrombozytensekretion. In: Pötzsch B, Madlener K. (eds). Hämostaseologie. Grundlagen, Diagnostik und Therapie; 2010: 67-72.
  • 32 Duke WW. The relation of blood platelets to hemorrhagic disease. JAMA 1983; 250: 1201-1209.
  • 33 Ivy AC, Nelson D, Buchet C. The standardization of certain factors in the cutaneous ‘venostasis’ bleeding time technique. J Lab Clin Med 1941; 26: 1812.
  • 34 Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost 1990; 16: 1-20.
  • 35 Franchini M. The platelet function analyzer (pfa-100): An update on its clinical use. Clin Lab 2005; 51: 367-372.
  • 36 Savion N, Varon D. Impact--the cone and plate(let) analyzer: Testing platelet function and anti-platelet drug response. Pathophysiol Haemost Thromb 2006; 35: 83-88.
  • 37 Michelson AD. Methods for the measurement of platelet function. Am J Cardiol 2009; 103: 20A-26A.
  • 38 Bliden KP, DiChiara J, Tantry US. et al Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention: Is the current antiplatelet therapy adequate?. J Am Coll Cardiol 2007; 49: 657-666.
  • 39 Gurbel PA, Bliden KP, DiChiara J. et al. Evaluation of dose-related effects of aspirin on platelet function: Results from the aspirin-induced platelet effect (aspect) study. Circulation 2007; 115: 3156-3164.
  • 40 Scharbert G, Auer A, Kozek-Langenecker S. Evaluation of the platelet mapping assay on rotational thromboelastometry rotem. Platelets 2009; 20: 125-130.
  • 41 Gurbel PA, Becker RC, Mann KG. et al. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol 2007; 50: 1822-1834.
  • 42 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929.
  • 43 Cattaneo M, Cerletti C, Harrison P. et al. Recommendations for the standardization of light transmission aggregometry: A consensus of the working party from the platelet physiology subcommittee of ssc/isth. J Thromb Haemost. 2013 doi: 10.1111/jth.12231..
  • 44 Dawood BB, Lowe GC, Lordkipanidze M. et al. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012; 120: 5041-5049.
  • 45 Chanarin I. Platelet function tests. In: Chanarin I. (ed). Laboratory haematology. Edinburgh: Churchill Livingstone. 1989: 371-399.
  • 46 Mindukshev I, Gambaryan S, Kehrer L. et al. Low angle light scattering analysis: A novel quantitative method for functional characterization of human and murine platelet receptors. Clin Chem Lab Med 2012; 50: 1253-1262.
  • 47 Harrison P, Michelson AD. Laboratory markers of platelet activation. In: Marder VJ, Aird WC, Bennett JS, et al. (eds). Hemostasis and thrombosis. 2012: 829-839.
  • 48 Schwarz UR, Geiger J, Walter U, Eigenthaler M. Flow cytometry analysis of intracellular vasp phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets--definition and detection of ticlopidine/ clopidogrel effects. Thromb Haemost 1999; 82: 1145-1152.
  • 49 Kahr WH, Zheng S, Sheth PM. et al. Platelets from patients with the quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator. Blood 2001; 98: 257-265.
  • 50 Hemker HC, Giesen P, Al Dieri R. et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003; 33: 4-15.
  • 51 Reverter JC, Beguin S, Kessels H. et al. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7e3 antibody. Potential implications for the effect of c7e3 fab treatment on acute thrombosis and „clinical restenosis”. J Clin Invest 1996; 98: 863-874.
  • 52 Hemker HC, Al Dieri R, De Smedt E, Beguin S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost 2006; 96: 553-561.
  • 53 Van der Meijden PE, Feijge MA, Swieringa F. et al. Key role of integrin alpha(iib)beta (3) signaling to syk kinase in tissue factor-induced thrombin generation. Cell Mol Life Sci 2012; 69: 3481-3492.
  • 54 Keularts IM, Beguin S, de Zwaan C, Hemker HC. Treatment with a gpiib/iiia antagonist inhibits thrombin generation in platelet rich plasma from patients. Thromb Haemost 1998; 80: 370-371.
  • 55 Vanschoonbeek K, Feijge MA, Van Kampen RJ. et al. Initiating and potentiating role of platelets in tissue factor-induced thrombin generation in the presence of plasma: Subject-dependent variation in thrombogram characteristics. J Thromb Haemost 2004; 02: 476-484.
  • 56 Beguin S, Kumar R, Keularts I. et al. Fibrin-dependent platelet procoagulant activity requires gpib receptors and von willebrand factor. Blood 1999; 93: 564-570.
  • 57 Cosemans JM, Schols SE, Stefanini L. et al. Key role of glycoprotein ib/v/ix and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow. Blood 2011; 117: 651-660.
  • 58 Dörmann D, Clemetson KJ, Kehrel BE. The gpib thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 2000; 96: 2469-2478.
  • 59 Beguin S, Keularts I, Al Dieri R. et al. Fibrin polymerization is crucial for thrombin generation in platelet-rich plasma in a vwf-gpib-dependent process, defective in Bernard-Soulier syndrome. J Thromb Haemost 2004; 02: 170-176.
  • 60 Faber CG, Lodder J, Kessels F, Troost J. Thrombin generation in platelet-rich plasma as a tool for the detection of hypercoagulability in young stroke patients. Pathophysiol Haemost Thromb 2003; 33: 52-58.
  • 61 Razmara M, Hjemdahl P, Ostenson CG, Li N. Platelet hyperprocoagulant activity in type 2 diabetes mellitus: Attenuation by glycoprotein iib/iiia inhibition. J Thromb Haemost 2008; 06: 2186-2192.
  • 62 Mobarrez F, He S, Broijersen A. et al. Atorvastatin reduces thrombin generation and expression of tissue factor, p-selectin and gpiiia on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb Haemost 2011; 106: 344-352.
  • 63 Subcommittee on Control of Anticoagulation of the SSCotI. Towards a recommendation for the standardization of the measurement of platelet-dependent thrombin generation. J Thromb Haemost 2011; 09: 1859-1861.
  • 64 Ninivaggi M, Apitz-Castro R, Dargaud Y. et al. Whole-blood thrombin generation monitored with a calibrated automated thrombogram-based assay. Clin Chem 2012; 58: 1252-1259.
  • 65 Sibbing D, Spannagl M. Direct oral anticoagulants and antiplatelet agents. Clinical relevance and options for laboratory testing. Hämostaseologie 2014; 34: 78-84.
  • 66 Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014; 124: 493-502.
  • 67 Jurk K, Kehrel BE. Pathophysiology and biochemistry of platelets. Internist (Berl) 2010; 51 1086, 1088-1092 1094..
  • 68 Van Kruchten R, Cosemans JM, Heemskerk JW. Measurement of whole blood thrombus formation using parallel-plate flow chambers - a practical guide. Platelets 2012; 23: 229-242.
  • 69 Colace TV, Tormoen GW, McCarty OJ, Diamond SL. Microfluidics and coagulation biology. Annu Rev Biomed Eng 2013; 15: 283-303.
  • 70 Roest M, Reininger A, Zwaginga JJ. et al. Flow chamber-based assays to measure thrombus formation in vitro: Requirements for standardization. J Thromb Haemost 2011; 09: 2322-2324.
  • 71 Zwaginga JJ, Sakariassen KS, King MR. et al. Can blood flow assays help to identify clinically relevant differences in von willebrand factor functionality in von willebrand disease types 1-3?. J Thromb Haemost 2007; 05: 2547-2549.
  • 72 Brehm MA, Huck V, Aponte-Santamaria C. et al. Von Willebrand disease type 2a phenotypes iic, iid and iie: A day in the life of shear-stressed mutant von Willebrand factor. Thromb Haemost 2014; 112: 96-108.
  • 73 De Witt SM, Swieringa F, Cavill R. et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 2014; 05: 4257.
  • 74 Cadroy Y, Bossavy JP, Thalamas C. et al. Early potent antithrombotic effect with combined aspirin and a loading dose of clopidogrel on experimental arterial thrombogenesis in humans. Circulation 2000; 101: 2823-2828.
  • 75 Mendolicchio GL, Zavalloni D, Bacci M, Corrada E, Marconi M, Lodigiani C, Presbitero P, Rota L, Ruggeri ZM. Variable effect of p2y12 inhibition on platelet thrombus volume in flowing blood. J Thromb Haemost 2011; 09: 373-382.
  • 76 Di Michele M, Van Geet C, Freson K. Recent advances in platelet proteomics. Expert Rev Proteomics 2012; 09: 451-466.
  • 77 Senis Y, Garcia A. Platelet proteomics: State of the art and future perspective. Methods Mol Biol 2012; 788: 367-399.
  • 78 Burkhart JM, Gambaryan S, Watson SP. et al. What can proteomics tell us about platelets?. Circ Res 2014; 114: 1204-1219.
  • 79 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120: e73-82.
  • 80 Beck F, Geiger J, Gambaryan S. et al. Time-resolved characterization of camp/pka-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood 2014; 123: e1-e10.
  • 81 Quiroga T, Goycoolea M, Munoz B. et al. Template bleeding time and pfa-100 have low sensitivity to screen patients with hereditary mucocutaneous hemorrhages: Comparative study in 148 patients. J Thromb Haemost 2004; 02: 892-898.
  • 82 Sladky JL, Klima J, Grooms L. et al. The pfa-100 (r) does not predict delta-granule platelet storage pool deficiencies. Haemophilia 2012; 18: 626-629.
  • 83 Favaloro EJ, Koutts J. 2b or not 2b? Masquerading as von Willebrand disease?. J Thromb Haemost 2012; 10: 317-319.
  • 84 Gordon N, Thom J, Cole C, Baker R. Rapid detection of hereditary and acquired platelet storage pool deficiency by flow cytometry. Br J Haematol 1995; 89: 117-123.
  • 85 Linden MD, Frelinger 3rd AL, Barnard MR. et al. Application of flow cytometry to platelet disorders. Semin Thromb Hemost 2004; 30: 501-511.
  • 86 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F. et al. Gray platelet syndrome: Natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116: 4990-5001.
  • 87 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrindependent platelet malfunction in siblings with leukocyte adhesion deficiency-iii (lad-iii) caused by a point mutation in fermt3. Thromb Haemost 2010; 103: 1053-1064.
  • 88 Dovlatova N, Lordkipanidze M, Lowe GC. et al. Evaluation of a whole blood remote platelet function test for the diagnosis of mild bleeding disorders. J Thromb Haemost 2014; 12: 660-665.