CC BY-NC-ND 4.0 · World J Nucl Med 2019; 18(02): 132-136
DOI: 10.4103/wjnm.wjnm_31_18
Original Article

Semiquantitative assessment of osteoblastic, osteolytic, and mixed lytic-sclerotic bone lesions on fluorodeoxyglucose positron emission tomography/computed tomography and bone scintigraphy

Guray Gurkan
0   Department of Nuclear Medicine, Sultan 1. Murat State Hospital, Kirklareli
,
Ismet Sarikaya
1   Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
,
Ali Sarikaya
2   Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey
› Author Affiliations

Abstract

Bone scintigraphy is widely used to detect bone metastases, particularly osteoblastic ones, and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scan is useful in detecting lytic bone metastases. In routine studies, images are assessed visually. In this retrospective study, we aimed to assess the osteoblastic, osteolytic, and mixed lytic-sclerotic bone lesions semiquantitatively by measuring maximum standardized uptake value (SUVmax) on FDG PET/computed tomography (CT), maximum lesion to normal bone count ratio (ROImax) on bone scintigraphy, and Hounsfield unit (HU) on CT. Bone scintigraphy and FDG PET/CT images of 33 patients with various solid tumors were evaluated. Osteoblastic, osteolytic, and mixed lesions were identified on CT and SUVmax, ROImax, and HU values of these lesions were measured. Statistical analysis was performed to determine if there is a difference in SUVmax, ROImax, and HU values of osteoblastic, osteolytic, and mixed lesions and any correlation between these values. Patients had various solid tumors, mainly lung, breast, and prostate cancers. There were 145 bone lesions (22.8% osteoblastic, 53.1% osteolytic, and 24.1% mixed) on CT. Osteoblastic lesions had a significantly higher value of CT HU as compared to osteolytic and mixed lesions (P < 0.01). There was no significant difference in mean ROImaxand mean SUVmaxvalues of osteolytic and osteoblastic bone lesions. There was no correlation between SUVmaxand ROImax, SUVmaxand HU, and ROImaxand HU values in osteolytic, osteoblastic, and mixed lesions (P > 0.05). Not finding a significant difference in SUVmaxand ROImaxvalues of osteoblastic, osteolytic, and mixed lesions and also lack of correlation between SUVmax, ROImax, and HU values could be due to treatment status of the bone lesions, size of the lesion, nonmetastatic lesions, erroneous measurement of SUVmaxand ROImax, or varying metabolism in bone metastases originating from various malignancies.

Financial support and sponsorship

Nil.




Publication History

Received: 00 00 2019

Accepted: 00 00 2019

Article published online:
22 April 2022

© 2019. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Messiou C, Cook G, deSouza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 2009;101:1225-32.
  • 2 Bares R. Skeletal scintigraphy in breast cancer management. Q J Nucl Med 1998;42:43-8.
  • 3 Cook GJ, Fogelman I. Skeletal metastases from breast cancer: Imaging with nuclear medicine. Semin Nucl Med 1999;29:69-79.
  • 4 Cook GJ, Fogelman I. The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 2001;31:206-11.
  • 5 Ell PJ. Skeletal imaging in metastatic disease. Curr Opin Radiol 1991;3:791-6.
  • 6 Dotan ZA. Bone imaging in prostate cancer. Nat Clin Pract Urol 2008;5:434-44.
  • 7 Zhang L, Chen L, Xie Q, Zhang Y, Cheng L, Li H, et al. Acomparative study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and (99m)Tc-MDP whole-body bone scanning for imaging osteolytic bone metastases. BMC Med Imaging 2015;15:7.
  • 8 Woolfenden JM, Pitt MJ, Durie BG, Moon TE. Comparison of bone scintigraphy and radiography in multiple myeloma. Radiology 1980;134:723-8.
  • 9 Takenaka D, Ohno Y, Matsumoto K, Aoyama N, Onishi Y, Koyama H, et al. Detection of bone metastases in non-small cell lung cancer patients: Comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 2009;30:298-308.
  • 10 Rodrigues M, Stark H, Rendl G, Rettenbacher L, Datz L, Studnicka M, et al. Diagnostic performance of [18F] FDG PET-CT compared to bone scintigraphy for the detection of bone metastases in lung cancer patients. Q J Nucl Med Mol Imaging 2016;60:62-8.
  • 11 Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC, et al. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 2002;128:325-8.
  • 12 Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, et al. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 2005;19:573-9.
  • 13 Liu FY, Chang JT, Wang HM, Liao CT, Kang CJ, Ng SH, et al. [18F] fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastasis in endemic nasopharyngeal carcinoma at initial staging. J Clin Oncol 2006;24:599-604.
  • 14 Fujimoto R, Higashi T, Nakamoto Y, Hara T, Lyshchik A, Ishizu K, et al. Diagnostic accuracy of bone metastases detection in cancer patients: Comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 2006;20:399-408.
  • 15 Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: Initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 1996;199:751-6.
  • 16 Hur J, Yoon CS, Ryu YH, Yun MJ, Suh JS. Accuracy of fluorodeoxyglucose-positron emission tomography for diagnosis of single bone metastasis: Comparison with bone scintigraphy. J Comput Assist Tomogr 2007;31:812-9.
  • 17 Ito S, Kato K, Ikeda M, Iwano S, Makino N, Tadokoro M, et al. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 2007;48:889-95.
  • 18 Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med 1997;38:1401-6.
  • 19 Brown MS, Chu GH, Kim HJ, Allen-Auerbach M, Poon C, Bridges J, et al. Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl Med Commun 2012;33:384-94.
  • 20 Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013;3:45.
  • 21 Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375-9.
  • 22 Janicek MJ, Hayes DF, Kaplan WD. Healing flare in skeletal metastases from breast cancer. Radiology 1994;192:201-4.
  • 23 Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I, et al. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 1988;29:1354-9.
  • 24 Krupitskaya Y, Eslamy HK, Nguyen DD, Kumar A, Wakelee HA. Osteoblastic bone flare on F18-FDG PET in non-small cell lung cancer (NSCLC) patients receiving bevacizumab in addition to standard chemotherapy. J Thorac Oncol 2009;4:429-31.