CC BY-NC-ND 4.0 · South Asian J Cancer 2018; 07(03): 163-166
DOI: 10.4103/sajc.sajc_82_18
ORIGINAL ARTICLE: Breast Cancer

Breast-conserving radiotherapy with simultaneous integrated boost; field-in-field three-dimensional conformal radiotherapy versus inverse intensity-modulated radiotherapy – A dosimetric comparison: Do we need intensity-modulated radiotherapy?

Bindhu Joseph
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
Nisma Farooq
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
Sabari Kumar
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
C.R Vijay
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
Kurian J. Puthur
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
C. Ramesh
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
,
Vishwanath Lokesh
Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
› Author Affiliations
Source of Support: Nill.

Abstract

Background and Purpose: To examine the feasibility of improving breast-conserving radiotherapy with simultaneous integrated boost (SIB) and analyzing the efficiency of forward versus inverse intensity-modulated radiotherapy (IMRT) techniques in providing the same. Materials and Methods: Three-dimensional conformal radiotherapy (3DCRT) field-in-field (FIF) plans with simultaneous and sequential boost and IMRT SIB plans were generated for the datasets of 20 patients who had undergone breast-conserving surgery. The 3 plans were compared dosimetrically for efficiency in terms of planning target volume (PTV) coverage (PTV 95%), homogeneity and conformity, dose delivered to ipsilateral/contralateral lungs (I/L: V10, V20, C/L: Vmean, V5), heart and contralateral breast (Vmean, V30 for heart and Vmean, V1, V5 for C/L breast). Results: The FIF 3DCRT plan with SIB (PLAN B) was more homogeneous than the classical technique with sequential boost (PLAN A). There were less hot spots in terms of Dmax (63.7 ± 1.3) versus Dmax (68.9 ± 1), P < 0.001 and boost V107%, B (0.3 ± 0.7) versus A (3.5 ± 5.99), P = 0.001. The IMRT SIB (PLAN C) did not provide any significant dosimetric advantage over the 3DCRT SIB technique. IMRT SIB plan C was associated with increased dose to contralateral lung in-terms of V5 (10.35 +/- 18.23) vs. (1.13 +/- 4.24), P = 0.04 and Vmean (2.12 ± 2.18) versus Vmean (0.595 ± 0.89), P = 0.008. There was 3-fold greater exposure in terms of Monitor Unit (MU) (1024.9 ± 298.32 versus 281.05 ± 20.23, P < 0.001) and treatment delivery time. Conclusions: FIF 3DCRT SIB provides a dosimetrically acceptable and technically feasible alternative to the classical 3DCRT plan with sequential boost for breast-conserving radiotherapy. It reduces treatment time by 2 weeks. IMRT SIB does not appear to have any dosimetric advantage; it is associated with significantly higher doses to contralateral lung and heart and radiation exposure in terms of MU.



Publication History

Article published online:
22 December 2020

© 2018. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005;366:2087-106.
  • 2 Bartelink H, Horiot JC, Poortmans PM, Struikmans H, Van den Bogaert W, Fourquet A, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol 2007;25:3259-65.
  • 3 Romestaing P, Lehingue Y, Carrie C, Coquard R, Montbarbon X, Ardiet JM, et al. Role of a 10-gy boost in the conservative treatment of early breast cancer: Results of a randomized clinical trial in Lyon, France. J Clin Oncol 1997;15:963-8.
  • 4 Hurkmans CW, Cho BC, Damen E, Zijp L, Mijnheer BJ. Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol 2002;62:163-71.
  • 5 Ahunbay EE, Chen GP, Thatcher S, Jursinic PA, White J, Albano K, et al. Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 2007;67:1248-58.
  • 6 Joseph B, Farooq N, Shafeeque MN, Sathiyan S, Lokesh V, Ramesh C, et al. Hypofractionation in postmastectomy breast irradiation. How safe are we in using standard tangentials? Asian J Oncol 2017;3:101-5.
  • 7 Guerrero M, Li XA, Earl MA, Sarfaraz M, Kiggundu E. Simultaneous integrated boost for breast cancer using IMRT: A radiobiological and treatment planning study. Int J Radiat Oncol Biol Phys 2004;59:1513-22.
  • 8 van der Laan HP, Dolsma WV, Schilstra C, Korevaar EW, de Bock GH, Maduro JH, et al. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost. Radiother Oncol 2010;94:307-12.
  • 9 Yarnold J, Ashton A, Bliss J, Homewood J, Harper C, Hanson J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: Long-term results of a randomised trial. Radiother Oncol 2005;75:9-17.
  • 10 Owen JR, Ashton A, Bliss JM, Homewood J, Harper C, Hanson J, et al. Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: Long-term results of a randomised trial. Lancet Oncol 2006;7:467-71.
  • 11 START Trialists' Group, Bentzen SM, Agrawal RK, Aird EG, Barrett JM, Barrett-Lee PJ, et al. The UK standardisation of breast radiotherapy (START) trial A of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet Oncol 2008;9:331-41.
  • 12 START Trialists' Group, Bentzen SM, Agrawal RK, Aird EG, Barrett JM, Barrett-Lee PJ, et al. The UK standardisation of breast radiotherapy (START) trial B of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet 2008;371:1098-107.
  • 13 Kim KS, Shin KH, Choi N, Lee SW. Hypofractionated whole breast irradiation: New standard in early breast cancer after breast-conserving surgery. Radiat Oncol J 2016;34:81-7.
  • 14 van der Laan HP, Dolsma WV, Maduro JH, Korevaar EW, Hollander M, Langendijk JA, et al. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy. Int J Radiat Oncol Biol Phys 2007;68:1018-23.
  • 15 Hurkmans CW, Meijer GJ, van Vliet-Vroegindeweij C, van der Sangen MJ, Cassee J. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization. Int J Radiat Oncol Biol Phys 2006;66:923-30.
  • 16 Hijal T, Fournier-Bidoz N, Castro-Pena P, Kirova YM, Zefkili S, Bollet MA, et al. Simultaneous integrated boost in breast conserving treatment of breast cancer: A dosimetric comparison of helical tomotherapy and three-dimensional conformal radiotherapy. Radiother Oncol 2010;94:300-6.
  • 17 Singla R, King S, Albuquerque K, Creech S, Dogan N. Simultaneous-integrated boost intensity-modulated radiation therapy (SIB-IMRT) in the treatment of early-stage left-sided breast carcinoma. Med Dosim 2006;31:190-6.