RSS-Feed abonnieren
DOI: 10.4103/sajc.sajc_364_18
Clinical and epidemiological profile of neuroendocrine tumors: An experience from a regional cancer center from Western India
Financial support and sponsorship Nil.Abstract
Background: Most of the data on neuroendocrine tumors (NETs) are from the Western literature. Indian studies regarding clinicopathological characteristics and treatment outcomes are lacking. Methods: This is a prospective observational study of all new patients with NETs (except small-cell lung cancer) registered at our tertiary care cancer institute from November 2014 to November 2016. A total of 97 new patients were registered, of which 20 were lost to follow-up before starting any planned treatment. Epidemiological and clinicopathological features of all these 97 patients were studied, and the remaining 77 patients were analyzed for treatment response and survival analysis. Results: The median age at diagnosis was 49 years (20–74 years) with male preponderance (M: F = 1.85:1). The most common primary site of origin was pancreas (34/97 = 35%), followed by unknown primary origin (19%), small intestine (9%), and pulmonary (6%). Of 97 patients, 91 (93.8%) presented with nonfunctional symptoms, 3 (3.1%) had purely functional symptoms, and 3 (3.1%) presented with both functional and nonfunctional symptoms. The most common presenting symptom was abdominal pain (59.7%), followed by jaundice (9.3%), whereas watery diarrhea (83.3%) and flushing (66.7%) were the most common functional symptoms. Sixty-six percent (64/97) of cases were metastatic at presentation. A strong correlation was noted between the primary site of origin and metastatic presentation (P = 0.016). Chemotherapy was the most common primary therapy (40.2%), followed by surgery (28.6%), watchful waiting (15.6%), and somatostatin analogs (11.7%). The median event-free survival was highest for patients undergoing surgery (10 months). Conclusions: The clinicopathological profile of NETs in the Indian population differs from Western countries. Majority of patients present with metastatic disease, thus representing a need for creating awareness among patients and medical fraternity and formulating Indian guidelines for optimized treatment.
Key words
Clinical profile - epidemiology - Indian data - neuroendocrine tumors - pathological features - treatment outcomesPublikationsverlauf
Artikel online veröffentlicht:
21. Dezember 2020
© 2019. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Norton JA, Kunj PL. Carcinoid tumors and the carcinoid syndrome. In: DeVita VT Jr., Hellman S, Rosenberg SA, editors. Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2015. p. 1218-26.
- 2 Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004;80 Suppl 1:3-7.
- 3 Rindi G, Klöppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro) endocrine tumors: A consensus proposal including a grading system. Virchows Arch 2006;449:395-401.
- 4 Rindi G, Klöppel G, Couvelard A, Komminoth P, Körner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: A consensus proposal including a grading system. Virchows Arch 2007;451:757-62.
- 5 Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: A critical appraisal four years after its introduction. Endocr Pathol 2014;25:186-92.
- 6 Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid": Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008;26:3063-72.
- 7 Hauso O, Gustafsson BI, Kidd M, Waldum HL, Drozdov I, Chan AK, et al. Neuroendocrine tumor epidemiology: Contrasting Norway and North America. Cancer 2008;113:2655-64.
- 8 Tsai HJ, Wu CC, Tsai CR, Lin SF, Chen LT, Chang JS. The epidemiology of neuroendocrine tumors in Taiwan: A nation-wide cancer registry-based study. PLoS One 2013;8:e62487.
- 9 Amarapurkar DN, Juneja MP, Patel ND, Amarapurkar AD, Amarapurkar PD. A retrospective clinico-pathological analysis of neuroendocrine tumors of the gastrointestinal tract. Trop Gastroenterol 2010;31:101-4.
- 10 Abdulfattah MK, Al-Naqqash MA. The clinico-epidemiologic characteristics of Iraqi patients with neuroendocrine tumors and their response to long acting octreotide. J Fac Med Baghdad 2016;58:312-5.
- 11 Kapoor R, Bhattacharyya T, Gupta R, Mitta BR, Kalra N. A systematic review of management of neuroendocrine tumors: An experience from a tertiary care centre from India. Clin Cancer Investig J 2014;3:363-72.
- 12 Hafeez U, Joshi A, Bhatt M, Kelly J, Sabesan S, Vangaveti V. Clinical profile and treatment outcomes of advanced neuroendocrine tumours in rural and regional patients: A retrospective study from a regional cancer centre in North Queensland, Australia. Intern Med J 2017;47:284-90.
- 13 Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S, et al. Exploring the rising incidence of neuroendocrine tumors: A population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 2015;121:589-97.
- 14 Vélayoudom-Céphise FL, Duvillard P, Foucan L, Hadoux J, Chougnet CN, Leboulleux S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 2013;20:649-57.
- 15 Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 2015;39:683-90.
- 16 Imai H, Shirota H, Okita A, Komine K, Saijo K, Takahashi M, et al. Efficacy and safety of carboplatin and etoposide combination chemotherapy for extrapulmonary neuroendocrine carcinoma: A retrospective case series. Chemotherapy 2016;61:111-6.
- 17 Bongiovanni A, Riva N, Ricci M, Liverani C, La Manna F, De Vita A, et al. First-line chemotherapy in patients with metastatic gastroenteropancreatic neuroendocrine carcinoma. Onco Targets Ther 2015;8:3613-9.
- 18 Ramirez RA, Beyer DT, Chauhan A, Boudreaux JP, Wang YZ, Woltering EA. The role of capecitabine/temozolomide in metastatic neuroendocrine tumors. Oncologist 2016;21:671-5.
- 19 Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011;117:268-75.
- 20 Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID study group. J Clin Oncol 2009;27:4656-63.