CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(03): 801-807
DOI: 10.4103/ajns.AJNS_68_19
Original Article

Reliability of ABC/2 method in measuring of infarct volume in magnetic resonance diffusion-weighted image

Thiparom Sananmuang
Division of Diagnostic Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
,
Thanya Dejsiripongsa
Division of Diagnostic Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
,
Jesada Keandoungchun
1   Division of Neurology, Department of Internal Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
,
Mungkorn Apirakkan
Division of Diagnostic Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
› Author Affiliations

Aims: Manual planimetry is the current method defining infarct volume on magnetic resonance (MR) diffusion-weighted image. ABC/2 method is an ellipsoid geometric formula with advantage estimation of intraparenchymal hemorrhage volume. Our study aimed to find the reliability and reproducibility of ABC/2 method compared to manual planimetric segmentation method. Settings and Design: This was a cross-sectional analytical study with retrospective and prospective data collection. Subjects and Methods: A total of 109 patients with acute ischemic stroke and underwent MR images at Ramathibodi Hospital were retrospectively reviewed. Relationship between manual planimetric segmentation and ABC/2 methods (nonadjusted ABC/2 method and adjusted ABC*/2 method) was determined using Wilcoxon signed-rank test, linear regression analysis, and Bland–Altman plot. Subgroup analysis by location, onset, shape, and size of infarct volume was performed. Interobserver reliability was established using intraclass correlation coefficient and Bland–Altman plot. Statistical Analysis Used: Wilcoxon signed-rank test, linear regression analysis, and Bland–Altman plot were used for statistical analysis. Results: Infarct volume measured with nonadjusted ABC/2 method (23.56, 48.81, 4.25, 0.11, 318.94) (mean, standard deviation, median, minimum, maximum) and adjusted ABC*/2 method (13.37, 28.3, 2.08, 0.06, 170.10) was smaller than manual planimetric method (28.50, 58.64, 5.56, 0.27, 335.49) (P < 0.001). Linear regression's slope confirmed underestimation of volume infarct. In round-to-ellipsoid shape and white matter group, the differences found between nonadjusted ABC/2 and manual planimetric methods are not statistically significant. Conclusions: ABC/2 method is a simple, rapid, and reproducible method with an excellent positive correlation of both adjusted and nonadjusted ABC/2 methods to manual planimetric segmentation method but tendency to underestimated infarct volume. High interobserver reliability and good agreement between two observers have been established. The utilization of nonadjusted ABC/2 method should be used with caution due to its tendency to underestimate the infarct volume.

Financial support and sponsorship

Nil.




Publication History

Article published online:
09 September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation 2017;135:e146-603.
  • 2 Saengsuwan J, Suangpho P, Tiamkao S. Knowledge of stroke risk factors and warning signs in patients with recurrent stroke or recurrent transient ischaemic attack in Thailand. Neurol Res Int 2017;2017:8215726.
  • 3 Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009-18.
  • 4 Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A Meta-analysis. JAMA 2016;316:1279-88.
  • 5 Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11-21.
  • 6 Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708-18.
  • 7 Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, et al. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. Int J Stroke 2017;12:641-52.
  • 8 Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010;32:1024-37.
  • 9 Austein F, Riedel C, Kerby T, Meyne J, Binder A, Lindner T, et al. Comparison of perfusion CT software to predict the final infarct volume after thrombectomy. Stroke 2016;47:2311-7.
  • 10 Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996;27:1304-5.
  • 11 van der Worp HB, Claus SP, Bär PR, Ramos LM, Algra A, van Gijn J, et al. Reproducibility of measurements of cerebral infarct volume on CT scans. Stroke 2001;32:424-30.
  • 12 Pedraza S, Puig J, Blasco G, Daunis-I-Estadella J, Boada I, Bardera A, et al. Reliability of the ABC/2 method in determining acute infarct volume. J Neuroimaging 2012;22:155-9.
  • 13 Sims JR, Gharai LR, Schaefer PW, Vangel M, Rosenthal ES, Lev MH, et al. ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology 2009;72:2104-10.
  • 14 Gómez-Mariño R, André C, Novis SA. Volumetric determination of cerebral infarction in the acute phase using skull computed tomography without contrast: Comparative study of 3 methods. Arq Neuropsiquiatr 2001;59:380-3.