CC BY-NC-ND 4.0 · Eur J Dent 2014; 08(04): 571-579
DOI: 10.4103/1305-7456.143646
Review Article
Dental Investigation Society

The effect of surface roughness on ceramics used in dentistry: A review of literature

Haroon Rashid
1   Department of Prosthodontics, Ziauddin College of Dentistry, Karachi, Pakistan
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2019 (online)

ABSTRACT

Long term clinical success of modern dental ceramics depends on a number of factors. These factors include the physical properties of the material, the laboratory fabrication process, the laboratory fabrication technique and clinical procedures that may damage these brittle materials. The surface structure and composition of a dental restorative material influences the initial bacterial adhesion, and a rough material surface will accumulate more plaque. Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. An up to date online database search was performed using the keywords “bacterial biofilm,” “ceramic strength,” “dental ceramics” and “surface roughness.” The searches were performed on Medline/PubMed, and Scopus and the cross references were further searched in the databases to verify further studies. The relevant papers included original articles, systemic reviews, case reports and letters to the editor. All the papers were reviewed, and the most relevant studies were selected for referencing by the author. The aim of this paper is to highlight the influence of rougher surfaces on the ceramic strength and plaque accumulation leading to bacterial biofilm formation.

 
  • REFERENCES

  • 1 Moffa JP. Porcelain materials. Adv Dent Res 1988; 2: 3-6 8
  • 2 Kelly JR, Benetti P. Ceramic materials in dentistry: Historical evolution and current practice. Aust Dent J 2011; 56 (Suppl. 01) 84-96
  • 3 Shenoy A, Shenoy N. Dental ceramics: An update. J Conserv Dent 2010; 13: 195-203
  • 4 Qualtrough AJ, Piddock V. Dental ceramics: what's new?. Dent Update 2002; 29: 25-33
  • 5 Brien O. Dental Materials and Their Selection. 3rd ed.. Ch. 15. Chicago: Quintessence; 2002: 210-6
  • 6 Al-Shammery HA, Bubb NL, Youngson CC, Fasbinder DJ, Wood DJ. The use of confocal microscopy to assess surface roughness of two milled CAD-CAM ceramics following two polishing techniques. Dent Mater 2007; 23: 736-41
  • 7 Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra-and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995; 22: 1-14
  • 8 Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 1990; 17: 138-44
  • 9 Gharechahi M, Moosavi H, Forghani M. Effect of surface roughness and materials composition on biofilm formation. J Biomater Nanobiotechnol 2012; 3: 541-6
  • 10 Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010; 89: 657-65
  • 11 Isgrò G, Kleverlaan CJ, Wang H, Feilzer AJ. The influence of multiple firing on thermal contraction of ceramic materials used for the fabrication of layered all-ceramic dental restorations. Dent Mater 2005; 21: 557-64
  • 12 Boaventura JM, Nishida R, Elossais AA, Lima DM, Reis JM, Campos EA. et al. Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic. Acta Odontol Scand 2013; 71: 438-43
  • 13 Flury S, Lussi A, Zimmerli B. Performance of different polishing techniques for direct CAD/CAM ceramic restorations. Oper Dent 2010; 35: 470-81
  • 14 Martínez-Gomis J, Bizar J, Anglada JM, Samsó J, Peraire M. Comparative evaluation of four finishing systems on one ceramic surface. Int J Prosthodont 2003; 16: 74-7
  • 15 Odatsu T, Jimbo R, Wennerberg A, Watanabe I, Sawase T. Effect of polishing and finishing procedures on the surface integrity of restorative ceramics. Am J Dent 2013; 26: 51-5
  • 16 Haywood VB, Heymann HO, Kusy RP, Whitley JQ, Andreaus SB. Polishing porcelain veneers: An SEM and specular reflectance analysis. Dent Mater 1988; 4: 116-21
  • 17 Camacho GB, Vinha D, Panzeri H, Nonaka T, Gonçalves M. Surface roughness of a dental ceramic after polishing with different vehicles and diamond pastes. Braz Dent J 2006; 17: 191-4
  • 18 Sarikaya I, Güler AU. Effects of different polishing techniques on the surface roughness of dental porcelains. J Appl Oral Sci 2010; 18: 10-6
  • 19 Motro PF, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics. J Prosthet Dent 2012; 108: 231-7
  • 20 Kursoglu P, Karagoz MotroPF, Kazazoglu E. Correlation of surface texture with the stainability of ceramics. J Prosthet Dent 2014; 112: 306-13
  • 21 Sethi S, Kakade D, Jambhekar S, Jain V. An in vitro investigation to compare the surface roughness of auto glazed, reglazed and chair side polished surfaces of Ivoclar and Vita feldspathic porcelain. J Indian Prosthodont Soc 2013; 13: 478-85
  • 22 Haralur SB. Evaluation of efficiency of manual polishing over autoglazed and overglazed porcelain and its effect on plaque accumulation. J Adv Prosthodont 2012; 4: 179-86
  • 23 Binns D. The physical and chemical properties of dental porcelain (41-48). In: McLean JW. editor. Dental Ceramics. Proceeding of the First International Symposium on Ceramics. Chicago, USA: Quintessence Publishing; 1983
  • 24 Yilmaz C, Korkmaz T, Demirköprülü H, Ergün G, Ozkan Y. Color stability of glazed and polished dental porcelains. J Prosthodont 2008; 17: 20-4
  • 25 Fairhurst CW, Lockwood PE, Ringle RD, Thompson WO. The effect of glaze on porcelain strength. Dent Mater 1992; 8: 203-7
  • 26 Corbitt G, Morena R, Fairhurst C. Fracture stress of a commercial dental porcelain and its components. J Dent Res 1985; 64: 296
  • 27 Rashid H. Comparing glazed and polished ceramic surfaces using confocal laser scanning microscopy. J Adv Microscop Res 2012; 7: 208-13
  • 28 Evans DB, Barghi N, Malloy CM, Windeler AS. The influence of condensation method on porosity and shade of body porcelain. J Prosthet Dent 1990; 63: 380-9
  • 29 Zhang Y, Griggs JA, Benham AW. Influence of powder/liquid mixing ratio on porosity and translucency of dental porcelains. J Prosthet Dent 2004; 91: 128-35
  • 30 Cheung KC, Darvell BW. Sintering of dental porcelain: effect of time and temperature on appearance and porosity. Dent Mater 2002; 18: 163-73
  • 31 Mencik J. Strength and Fracture of Glass Ceramics. Glass Science and Technology. Vol. 12. Amsterdam: Elsevier; 1992
  • 32 Fischer H, Schäfer M, Marx R. Effect of surface roughness on flexural strength of veneer ceramics. J Dent Res 2003; 82: 972-5
  • 33 de Jager N, Feilzer AJ, Davidson CL. The influence of surface roughness on porcelain strength. Dent Mater 2000; 16: 381-8
  • 34 Molin MK, Karlsson SL. A randomized 5-year clinical evaluation of 3 ceramic inlay systems. Int J Prosthodont 2000; 13: 194-200
  • 35 Krämer N, Frankenberger R. Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years. Dent Mater 2005; 21: 262-71
  • 36 Pallesen U, van Dijken JW. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system. Eur J Oral Sci 2000; 108: 239-46
  • 37 Hayashi M, Wilson NH, Yeung CA, Worthington HV. Systematic review of ceramic inlays. Clin Oral Investig 2003; 7: 8-19
  • 38 Reiss B, Walther W. Clinical long-term results and 10-year Kaplan-Meier analysis of Cerec restorations. Int J Comput Dent 2000; 3: 9-23
  • 39 Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S. et al. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: A prospective clinical pilot study. J Prosthet Dent 2006; 96: 237-44
  • 40 Sailer I, Fehér A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007; 20: 383-8
  • 41 Tinschert J, Schulze KA, Natt G, Latzke P, Heussen N, Spiekermann H. Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont 2008; 21: 217-22
  • 42 Beuer F, Edelhoff D, Gernet W, Sorensen JA. Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs). Clin Oral Investig 2009; 13: 445-51
  • 43 Munz D, Fett T. Ceramics. Berlin: Springer; 1999
  • 44 Fairhurst CW, Lockwood PE, Ringle RD, Twiggs SW. Dynamic fatigue of feldspathic porcelain. Dent Mater 1993; 9: 269-73
  • 45 Ritchie R, Dauskardt R. Cyclic fatigue of ceramics: A mechanics approach to subcritical crack growth and life prediction. J Ceram Soc Japan 1991; 99: 1047-62
  • 46 Mecholsky Jr JJ. Fracture mechanics principles. Dent Mater 1995; 11: 111-2
  • 47 Bloyer DR, McNaney JM, Cannon RM, Saiz E, Tomsia AP, Ritchie RO. Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment. Biomaterials 2007; 28: 4901-11
  • 48 Charles R. Dynamic fatigue of glass. J Appl Phys 1958; 29: 1657-62
  • 49 Wiederhorn S. Influence of water vapor on crack propagation in soda-lime-glass. J Am Ceram Soc 1967; 50: 407-14
  • 50 Charles R. Static fat igue of glass. J Appl Phys 1958; 29: 1549-53
  • 51 Dalkiz M, Sipahi C, Beydemir B. Effects of six surface treatment methods on the surface roughness of a low-fusing and an ultra low-fusing feldspathic ceramic material. J Prosthodont 2009; 18: 217-22
  • 52 Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: Analysis and modeling. J Dent Res 1995; 74: 1253-8
  • 53 Bazant Z. Mechanics of distributed cracking. Appl Mech Rev 1986; 39: 675-705
  • 54 Irwin G. Analysis of stresses and strains near the end of a crack transversing a plate. J Appl Mech 1957; 24: 361-4
  • 55 Mecholsky J, Freiman S, Rice R. Effect of grinding on flaw geometry and fracture of glass. J Am Ceram Soc 1977; 60: 114-7
  • 56 Coffey JP, Anusavice KJ, DeHoff PH, Lee RB, Hojjatie B. Influence of contraction mismatch and cooling rate on flexural failure of PFM systems. J Dent Res 1988; 67: 61-5
  • 57 Isgró G, Addison O, Fleming GJ. Transient and residual stresses induced during the sintering of two dentin ceramics. Dent Mater 2011; 27: 379-85
  • 58 McLean JW, Hughes TH. The reinforcement of dental porcelain with ceramic oxides. Br Dent J 1965; 21 119 251-67
  • 59 Isgró G, Addison O, Fleming GJ. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry. J Dent 2011; 39: 368-75
  • 60 Tholey MJ, Swain MV, Thiel N. SEM observations of porcelain Y-TZP interface. Dent Mater 2009; 25: 857-62
  • 61 Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009; 5: 1668-77
  • 62 Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings – A new fabrication mode for all-ceramic restorations. Dent Mater 2009; 25: 121-8
  • 63 Schley JS, Heussen N, Reich S, Fischer J, Haselhuhn K, Wolfart S. Survival probability of zirconia-based fixed dental prostheses up to 5 yr: A systematic review of the literature. Eur J Oral Sci 2010; 118: 443-50
  • 64 Albashaireh ZS, Ghazal M, Kern M. Two-body wear of different ceramic materials opposed to zirconia ceramic. J Prosthet Dent 2010; 104: 105-13
  • 65 Stawarczyk B, Ozcan M, Roos M, Trottmann A, Sailer I, Hämmerle CH. Load-bearing capacity and failure types of anterior zirconia crowns veneered with overpressing and layering techniques. Dent Mater 2011; 27: 1045-53
  • 66 Drummond JL. Ceramic behavior under different environmental and loading conditions. Dental Materials in vivo: Aging and Related Phenomena. IL: Quinte Chicago; 2003: 35-45
  • 67 Holden JE, Goldstein GR, Hittelman EL, Clark EA. Comparison of the marginal fit of pressable ceramic to metal ceramic restorations. J Prosthodont 2009; 18: 645-8
  • 68 Loesche WJ, Syed SA, Schmidt E, Morrison EC. Bacterial profiles of subgingival plaques in periodontitis. J Periodontol 1985; 56: 447-56
  • 69 Moons P, Michiels CW, Aertsen A. Bacterial interactions in biofilms. Crit Rev Microbiol 2009; 35: 157-68
  • 70 Sbordone L, Bortolaia C. Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Invest 2003; 7: 181-8
  • 71 Grössner-Schreiber B, Teichmann J, Hannig M, Dörfer C, Wenderoth DF, Ott SJ. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clin Oral Implants Res 2009; 20: 817-26
  • 72 Jansson L, Ehnevid H, Lindskog S, Blomlöf L. Proximal restorations and periodontal status. J Clin Periodontol 1994; 21: 577-82
  • 73 Jansson L, Blomster S, Forsgårdh A, Bergman E, Berglund E, Foss L. et al. Interactory effect between marginal plaque and subgingival proximal restorations on periodontal pocket depth. Swed Dent J 1997; 21: 77-83
  • 74 Cenci MS, Lund RG, Pereira CL, de Carvalho RM, Demarco FF. In vivo and in vitro evaluation of Class II composite resin restorations with different matrix systems. J Adhes Dent 2006; 8: 127-32
  • 75 Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater 2008; 24: 732-6
  • 76 Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent 1996; 21: 17-24
  • 77 Collins CJ, Bryant RW, Hodge KL. A clinical evaluation of posterior composite resin restorations: 8-year findings. J Dent 1998; 26: 311-7
  • 78 Pashley DH. Clinical considerations of microleakage. J Endod 1990; 16: 70-7
  • 79 Mitchell L. Decalcification during orthodontic treatment with fixed appliances – An overview. Br J Orthod 1992; 19: 199-205
  • 80 Papaioannou W, Gizani S, Nassika M, Kontou E, Nakou M. Adhesion of Streptococcus mutans to different types of brackets. Angle Orthod 2007; 77: 1090-5
  • 81 Busscher H, Weerkamp A. Specific and nonspecific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Rev 1987; 46: 165-73
  • 82 Busscher H, Sjollema J, van der Mei H. Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle RJ, Rosenberg M. editors. Microbial Cell Surface Hydrophobicity. Washington, DC: American Society for Microbiology; 1990: 335-9
  • 83 Van Loosdrecht M, Zehnder A. Energetics of bacterial adhesion. Experientia 1990; 46: 817-22
  • 84 van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ. Influence of interfaces on microbial activity. Microbiol Rev 1990; 54: 75-87
  • 85 Scheie A. Mechanisms of dental plaque formation. Adv Dent Res 1994; 8: 246-53
  • 86 Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions – Its mechanisms and methods for study. FEMS Microbiol Rev 1999; 23: 179-230
  • 87 Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006; 17 (Suppl. 02) 68-81
  • 88 Kawai K, Urano M, Ebisu S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J Prosthet Dent 2000; 83: 664-7
  • 89 Patterson CJ, McLundie AC, Stirrups DR, Taylor WG. Efficacy of a porcelain refinishing system in restoring surface finish after grinding with fine and extra-fine diamond burs. J Prosthet Dent 1992; 68: 402-6
  • 90 Hahn R, Weiger R, Netuschil L, Brüch M. Microbial accumulation and vitality on different restorative materials. Dent Mater 1993; 9: 312-6
  • 91 Auschill TM, Arweiler NB, Brecx M, Reich E, Sculean A, Netuschil L. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci 2002; 110: 48-53
  • 92 Scotti R, Kantorski KZ, Monaco C, Valandro LF, Ciocca L, Bottino MA. SEM evaluation of in situ early bacterial colonization on a Y-TZP ceramic: A pilot study. Int J Prosthodont 2007; 20: 419-22
  • 93 Bremer F, Grade S, Kohorst P, Stiesch M. In vivo biofilm formation on different dental ceramics. Quintessence Int 2011; 42: 565-74