CC BY-NC-ND 4.0 · Eur J Dent 2014; 08(03): 342-347
DOI: 10.4103/1305-7456.137644
Original Article
Dental Investigation Society

Radiopacity evaluation of contemporary resin composites by digitization of images

R. Banu Ermis
1   Department of Restorative Dentistry, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkiye
,
Derya Yildirim
2   Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkiye
,
Gul Yildiz
1   Department of Restorative Dentistry, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkiye
,
Ozlem Gormez
2   Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkiye
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. September 2019 (online)

ABSTRACT

Objective: The aim of this study was to evaluate the radiopacity of different composite resins and compare the values to those of human enamel and dentine. Materials and Methods: Five specimens of each material with thicknesses of 2 mm were prepared and radiographed alongside aluminum step wedge and human enamel and dentin. Three occlusal radiographs for each material were taken and digitized using a desktop scanner. Mean gray values of the test materials were measured using Image J software. Then a conversion was performed according to establish the radiopacity of the test materials, in millimeters of equivalent Al. Data were analyzed using one-way analysis of variance and Duncan multiple range tests (P < 0.05). Results: The radiopacity values varied among the restorative materials (P < 0.05). The radiopacity values of the materials tested were, in decreasing order: Enamel Plus HRI > Z250 > Filtek Ultimate ≥ Z550 > Nexcomp ≥ Nanoceram Bright > enamel ≥ Estelite Sigma Quick > Clearfil Majesty Esthetic ≥ Reflexions XLS ≥ Aelite LS Posterior ≥ dentin ≥ 2 mm Al. Conclusion: All resin composite materials investigated in this study presented different radiopacity values. However, all materials had radiopacity values greater than dentin and had sufficient radiopacity to meet International Organization for Standardization 4049 standard.

 
  • REFERENCES

  • 1 Terry DA, Leinfelder KF, Blatz MB. Achieving excellence using an advanced biomaterial: Part 1. Dent Today 2009; 28: 49-50 52-5
  • 2 Margeas R. Composite materials: Advances lead to ease of use, better performance. Compend Contin Educ Dent 2013; 34: 370-1
  • 3 Fortin D, Vargas MA. The spectrum of composites: New techniques and materials. J Am Dent Assoc 2000; 131 Suppl 26S-30
  • 4 Sakaguchi RL, Powers JM. Craig's Restorative Dental Materials. 13th ed.. Philadelphia: Elsevier, Mosby; 2012
  • 5 Anusavice KJ, Shen C, Rawls HR. Phillips’ Science of Dental Materials. 12th ed.. St. Louis: Elsevier, Saunders; 2013
  • 6 Oikarinen KS, Nieminen TM, Mäkäräinen H, Pyhtinen J. Visibility of foreign bodies in soft tissue in plain radiographs, computed tomography, magnetic resonance imaging, and ultrasound. An in vitro study. Int J Oral Maxillofac Surg 1993; 22: 119-24
  • 7 International Organization for Standardization. ISO 4049: Dentistry-Polymer-Based Restorative Materials. Geneva: ISO; 2009
  • 8 Okuda Y, Noda M, Kono H, Miyamoto M, Sato H, Ban S. Radio-opacity of core materials for all-ceramic restorations. Dent Mater J 2010; 29: 35-40
  • 9 Vivan RR, Ordinola-Zapata R, Bramante CM, Bernardineli N, Garcia RB, Hungaro Duarte MA. et al. Evaluation of the radiopacity of some commercial and experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e35-8
  • 10 Ergücü Z, Türkün LS, Onem E, Güneri P. Comparative radiopacity of six flowable resin composites. Oper Dent 2010; 35: 436-40
  • 11 Tanomaru-Filho M, da Silva GF, Duarte MA, Gonçalves M, Tanomaru JM. Radiopacity evaluation of root-end filling materials by digitization of images. J Appl Oral Sci 2008; 16: 376-9
  • 12 Akcay I, Ilhan B, Dundar N. Comparison of conventional and digital radiography systems with regard to radiopacity of root canal filling materials. Int Endod J 2012; 45: 730-6
  • 13 Salzedas LM, Louzada MJ, de Oliveira Filho AB. Radiopacity of restorative materials using digital images. J Appl Oral Sci 2006; 14: 147-52
  • 14 Gürdal P, Akdeniz BG. Comparison of two methods for radiometric evaluation of resin-based restorative materials. Dentomaxillofac Radiol 1998; 27: 236-9
  • 15 Toyooka H, Taira M, Wakasa K, Yamaki M, Fujita M, Wada T. Radiopacity of 12 visible-light-cured dental composite resins. J Oral Rehabil 1993; 20: 615-22
  • 16 Devito KL, Ortega AI, Haiter-Neto F. Radiopacity of calcium hydroxide cement compared with human tooth structure. J Appl Oral Sci 2004; 12: 290-3
  • 17 Dantas RV, Sarmento HR, Duarte RM, Meireles Monte Raso SS, de Andrade AK, Dos Anjos-Pontual ML. Radiopacity of restorative composites by conventional radiograph and digital images with different resolutions. Imaging Sci Dent 2013; 43: 145-51
  • 18 Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater 1991; 7: 114-7
  • 19 Chan DC, Titus HW, Chung KH, Dixon H, Wellinghoff ST, Rawls HR. Radiopacity of tantalum oxide nanoparticle filled resins. Dent Mater 1999; 15: 219-22
  • 20 Jones DW. Dental composite biomaterials. J Can Dent Assoc 1998; 64: 732-4
  • 21 Australian Dental Association. Status report on the restoration of posterior teeth with composite resin materials. Aust Dent J 1984; 29: 348-51
  • 22 Imperiano MT, Khoury HJ, Pontual MA, Montes MJ, da Silveira MF. Comparative radiopacity of four low viscosity composites. Braz J Oral Sci 2007; 6: 1278-82
  • 23 Fabianelli A, Sgarra A, Goracci C, Cantoro A, Pollington S, Ferrari M. Microleakage in class II restorations: Open vs closed centripetal build-up technique. Oper Dent 2010; 35: 308-13
  • 24 Micerium Technical Product File [Internet]. Micerium S.P.A; Avegno, Italy: 2011. [Last accessed on 2014 Feb 20]. Available from: http://www.micerium.com/amministrazione/repository/files/28/HRi%20 3%20ante%20ING%20v1_03-2011_Layout%201.pdf
  • 25 Kim M, Lee M, Seo W, Oh M, Kim W, Oh N. et al. Radiopacity of restorative composites filled with SiO2/ZrO2 core-shell particles. 18th International Conference on Composite Materials. 2011. August 21-26; Jeju, Korea:
  • 26 Taira M, Toyooka H, Miyawaki H, Yamaki M. Studies on radiopaque composites containing ZrO2-SiO2 fillers prepared by the sol-gel process. Dent Mater 1993; 9: 167-71
  • 27 3M ESPE Technical Product File [Internet]. 3M ESPE AG. Seefeld, Germany: 2010 Available from: http://solutions.3m.com.tr/3MContentRetrievalAPI/BlobServlet?lmd=1336733206000andlocale=en_WW and assetType=MMM_Imageand assetId=1319228100578 and blobAttribute=ImageFile [Last accessed on 2014 Feb 20]
  • 28 Tokuyama Dental Technical Report [Internet]. Tokyo, Japan: Tokuyama Dental Corporation; Available from: http://www.tokuyama-dental.com/pdf/technicalreport/EsteliteSigmaQuick_TechnicalReport.pdf [Last accessed on 2014 Feb 20]
  • 29 Williams JA, Billington RW. The radiopacity of glass ionomer dental materials. J Oral Rehabil 1990; 17: 245-8
  • 30 Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MA. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol 2013; 42: 20120153
  • 31 Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009; 4: 130-51
  • 32 Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25
  • 33 Veronese I, Guzzi G, Giussani A, Cantone MC, Ripamonti D. Determination of dose rates from natural radionuclides in dental materials. J Environ Radioact 2006; 91: 15-26