CC BY-NC-ND 4.0 · J Lab Physicians 2012; 4(01): 039-042
DOI: 10.4103/0974-2727.98670
Original Article

Prevalence and Risk Factors of Metallo β-lactamase Producing Pseudomonas aeruginosa and Acinetobacter species in Burns and Surgical Wards in a Tertiary Care Hospital

Simit H Kumar
Department of Microbiology, India
,
Anuradha S De
Department of Microbiology, India
,
Sujata M Baveja
Department of Microbiology, India
,
Madhuri A Gore
Department of Surgery, L.T.M. Medical College, Sion, Mumbai - 400 022, Maharashtra, India
› Author Affiliations
Source of Support: Nil

ABSTRACT

Introduction: The production of Metallo-β-lactamases (MBLs) is one of the resistance mechanisms of Pseudomonas aeruginosa and Acinetobacter species. There is not much Indian data on the prevalence of MBLs in burns and surgical wards.

Materials and Methods: A total of 145 non-duplicate isolates of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter species, isolated from pus/wound swabs and endotracheal secretions from burns and surgical wards, were tested for MBL production by modified ethylene diamine tetra acetic acid (EDTA) disc synergy and double disc synergy tests.

Results: Prevalence of MBLs was 26.9% by both the above tests. All MBL-positive isolates were multidrug resistant. Only 6.06% (2/33) P.aeruginosa and 16.67% (1/06) Acinetobacter species were susceptible to piperacillin-tazobactam and netilmycin, respectively. These patients had multiple risk factors like >8 days hospital stay, catheterization, IV lines, previous antibiotic use, mechanical ventilation, etc. Graft application and surgical intervention were significant risk factors in MBL-positive patients. Overall mortality in MBL-positive patients was 34.21%.

Conclusion: Emergence of MBL-producing Pseudomonas aeruginosa and Acinetobacter species in this hospital is alarming, which reflect excessive use of carbapenems and at the same time, pose a therapeutic challenge to clinicians as well as to microbiologists. Therefore, a strict antibiotic policy and implementation of proper infection control practices will go a long way to prevent further spread of MBLs. Detection of MBLs should also become mandatory in all hospitals.



Publication History

Article published online:
09 May 2020

© 2012.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: The quiet before the storm? Clin Microbiol Rev 2005;18:306-25.
  • 2 Butt T, Usman M, Ahmed RN, Saif I. Emergence of Metallo- β-lactamase producing Pseudomonas aeruginosa in Pakistan. J Pak Med Assoc 2005;55:302-4.
  • 3 Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing Metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol 2005;43:3129-35.
  • 4 Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. VIM- and IMP-type Metallo-β-lactamase producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis 2003;9:868-71.
  • 5 Behera B, Mathur P, Das A, Kapil A, Sharma V. An evaluation of four different phenotypic techniques for detection of Metallo-β -lactamase producing Pseudomonas aeruginosa. Indian J Med Microbiol 2008;26:233-7.
  • 6 Jayakumar S, Appalaraju B. Prevalence of multi and pan drug resistant Pseudomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital. Indian J Pathol Microbiol 2007;50:922-5.
  • 7 Khosravi AD, Mihahi F. Detection of Metallo-β-lactamase producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis 2008;60:125-8.
  • 8 Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN. Prevalence of Metallo-β-lactamase among Pseudomonas aeruginosa and Acinetobacter baumanii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns 2005;31:707-10.
  • 9 Rajput A, Saxena R, Singh KP, Kumar V, Singh S, Gupta A, et al. Prevalence of antibiotic resistance pattern of Metallo-β-lactamase producing Pseudomonas aeruginosa from burn patients - Experience of an Indian tertiary care hospital. J Burn Care Res 2010;31:264-8.
  • 10 Karthika UR, Rao SR, Sahoo S, Shashikala P, Kanungo R, Jayachandran S, et al. Phenotypic and genotypic assays for detecting the prevalence of metallo-beta-lactamases in clinical isolates of Acinetobacter baumanii from a South Indian tertiary care hospital. J Med Microbiol 2009;54:430-5.
  • 11 De AS, Kumar SH, Baveja SM. Prevalence of Metallo-β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in intensive care areas in a tertiary care hospital. Indian J Crit Care Med 2010;14:217-9.
  • 12 Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen Metallo-β-lactamase strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect Dis 2001;7:88-91.
  • 13 Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the imipenem-EDTA Double Disk Synergy Test for differentiating Metallo-β-lactamase producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41:4623-9.
  • 14 Performance Standards for Antimicrobial Susceptibility Testing; Twenty First Informational Supplement. Clinical Laboratory Standards Institute. 2011;M100-S21;31:62-5.
  • 15 Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of Metallo-β-lactamase producing Pseudomonas aeruginosa isolated from burn patients in Teheran, Iran. Lab Med 2010;41:609-12.
  • 16 Bandekar N, Vinodkumar CS, Basavarajappa KG, Prabhakar PJ, Nagaraj P. Beta lactamases mediated resistance amongst gram negative bacilli in Burn infection. International J Biol Med Res 2011;2:766-70.
  • 17 Peshattiwar PD, Peerapur BV. ESBL and MBL mediated resistance in Pseudomonas aeruginosa: An emerging threat to clinical therapeutics. J Clin Diagn Res 2011;5:1552-4.
  • 18 Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumanii. Antimicrob Agents Chemother 2007;51:3471-84.
  • 19 Organisms with Metallo-beta-lactamases (MBLs). Infection Control Fact Sheet 2007. Infection Control and Hospital Epidemiology Unit, Alfred Hospital. 2007. Available from: http://www.Alfred.org.au/Department/index.html. [Last accessed on 2008 Sept 18].
  • 20 Weber J, McManus A. Infection control in burn patients. Burns 2004;30:A16-24.