CC BY-NC-ND 4.0 · J Lab Physicians 2010; 2(02): 082-084
DOI: 10.4103/0974-2727.72155
Original Article

Prevalence and Antimicrobial Susceptibility Pattern of Methicillin-resistant Staphylococcus Aureus [MRSA] Isolates at a Tertiary Care Hospital in Mangalore, South India

Vidya Pai
Department of Microbiology, Yenepoya Medical College, Nithyananda Nagar, Mangalore – 575 018, India
,
Venkatakrishna I Rao
Department of Microbiology, Yenepoya Medical College, Nithyananda Nagar, Mangalore – 575 018, India
,
Sunil P Rao
Department of Microbiology, Yenepoya Medical College, Nithyananda Nagar, Mangalore – 575 018, India
› Author Affiliations
Source of Support: Nil

ABSTRACT

Background/Aim: Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections worldwide. The aim of this study was to determine the prevalence of MRSA and their antimicrobial susceptibility pattern in our hospital located in Mangalore, India.

Materials and Methods: The bacterial isolates from various clinical specimens of patients admitted in our hospital were cultured as per standard protocol and all isolates of Staphylococcus aureus obtained were included in the study. The isolates were identified by standard methods like catalase test, slide and tube coagulase tests, and growth on Mannitol salt agar (HiMedia Lab, Mumbai). The antimicrobial susceptibility testing was performed by Kirby–Bauer disc diffusion method. The D-test for inducible clindamycin resistance was performed. The isolates were tested for methicillin resistance by using oxacillin disc by disc diffusion method and confirmed by agar screen test (oxacillin 6 μgm/ml). The results were interpreted according to CLSI criteria.

Results: During a period of one year, a total of 237 isolates of S. aureus were studied and 69 (29.1%) were found to be methicillin-resistant. MRSA isolates showed greater resistance to multiple drugs than methicillin sensitive Staphylococcus aureus MSSA isolates. Inducible clindamycin resistance was 18.8% in MRSA as against 3.5% in MSSA. About 40–50% of MRSA were resistant to erythromycin, gentamicin, and chloramphenicol, while less than 30% were resistant to ciprofloxacin and amikacin. However, all strains were sensitive to vancomycin.

Conclusion: The regular surveillance of hospital-acquired infections of MRSA may be helpful in formulating and monitoring the antibiotic policy. This may also help in preserving antibiotics like vancomycin, only for life-threatening staphylococcal diseases.



Publication History

Article published online:
29 January 2020

© 2010.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Cox RA, Conquest C, Mallaghan C, Marples RR. A major outbreak of methicillin resistant Staphylococcus aureus caused by a new phage type (EMRSA-16). J Hosp Infect 1995; 29:87-106.
  • 2 Collee JG, Miles RS, Watt B. Test for the identification of bacteria. In: Mackie, McCartney, editors. Practical Medical Microbiology. 14th Ed. New York: Churchill Livingstone; 1996. p. 131-45.
  • 3 Performance Standards for Antimicrobial susceptibility testing. Seventeenth informational supplement. Clinical Laboratory Standards Institute. 2007; M100-S17; 27:53.
  • 4 Mehta AP, Rodrigue C, Sheth K, Jani S, Hakimiyan A, Fazalbhoy. Control of methicillin resistant Staphylococcus aureus in a tertiary care center: A five year studyJ Med Microbiol 1998; 16:31-4.
  • 5 Kumari N, Mohapatra TM, Singh YI. Prevalence of methicillin resistant Staphylococcus aureus [MRSA] in a tertiary care hospital in Eastern Nepal. JNMA J Nepal Med Assoc 2008; 47:53-6.
  • 6 Tiwari HK, Sapkota D, Sen MR. High prevalence of multidrug-resistant MRSA in a tertiary care hospital of northern India. Infection and Drug Resistance. 2008;1:57-61.
  • 7 Mohanty S, Kapil A, Dhawan B. Bacteriological and antimicrobial susceptibility profile of soft tissue infections from Northern India. Indian J Med Microbiol 2004; 58:10-5.
  • 8 Kandle SK, Ghatole MP, Takpere AY, Hittinhalli VB, Yemul VL. Bacteriophage typing and antibiotic sensitivity pattern of Staphylococcus aureus from clinical specimen in and around Solapur (South Maharashtra). J Commun Dis 2003; 35:17-23.
  • 9 Agnihotri N, Kaistha N, Gupta V. Antimicrobial susceptibility of isolates form neonatal septicemia. Jpn J Infect Dis 2004; 57:273-5.
  • 10 Sharon MS, Robert HK, Flor TT. Ciprofloxacin in therapy for Methicillin Resistant Staphylococcus aureus infections or colonizations. Antimicrob Agents Chemother 1989; 2:181-4.
  • 11 Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK. Rapid development of Ciprofloxacin resistance in methicillin sensitive and methicillin resistant S. aureus. J Infect Dis 1991; 6:1279-85.
  • 12 Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. J Med Microbiol 2007; 56:342-5.
  • 13 Gadepalli R, Dhawan B, Mohanty S, Kapil A, Das BK, Chaudhry R. Inducible clindamycin resistance in clinical isolates of Staphylococcus aureus. Indian J Med Res 2006; 123:571-3.
  • 14 Ajantha GS, Kulkarni RD, Shetty J, Shubhada C, Jain P. Phenotypic detection of inducible clindamycin resistance amongst Staphylococcus aureus isolates by using lower limit of recommended inter-disk distance. Indian J Pathol Microbiol 2008; 51:376-8.