CC BY-NC-ND 4.0 · J Lab Physicians 2014; 6(01): 007-013
DOI: 10.4103/0974-2727.129083
Original Article

Extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniaei: A Multi-centric Study Across Karnataka

Sridhar PN Rao
Department of Microbiology, JJM Medical College, Davangere, Karnataka, India
,
Prasad Subba Rama
Department of Microbiology, Sri Devaraj Urs Medical College, Kolar, Karnataka, India
,
Vishwanath Gurushanthappa
Department of Microbiology, JJM Medical College, Davangere, Karnataka, India
,
Radhakrishna Manipura
Department of Microbiology, Kasturba Medical College, Mangalore, Karnataka, India
,
Krishna Srinivasan
Department of Microbiology, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India
› Author Affiliations
Source of Support: Nil.

ABSTRACT

Background: There are sporadic reports on detection of extended-spectrum beta-lactamases (ESBL) producers from Karnataka; hence, this is a first multicentric study across Karnataka state to determine the prevalence of ESBL production among clinical isolates of Escherichia coli and Klebsiella pneumoniaei.

Aims and objectives: To determine the prevalence of ESBL producing clinical isolates of E. coli and K. pneumoniae from five geographically distributed centers across Karnataka, to study the susceptibility of ESBL producing isolates to other beta-lactam and beta-lactam-beta-lactamase inhibitors and to demonstrate transferability of plasmids coding for ESBL phenotype.

Materials and Methods: Two hundred isolates of E. coli and K. pneumoniae each were collected from each of the five centers (Bellary, Dharwad, Davangere, Kolar and Mangalore). They were screened for resistance to screening agents (ceftazidime, cefotaxime, ceftriaxone, aztreonam) and positive isolates were confirmed for ESBL production by test described by Clinical and Laboratory Standards Institute . Co-production of ESBL and AmpC beta-lactamase was identified by using amino-phenylboronic acid disk method. Susceptibility of ESBL producers to beta-lactam antibiotics and beta-lactamase inhibitors was performed. Transferability of plasmids was performed by conjugation experiment.

Results: Overall prevalence of ESBL production among E. coli and K. pneumoniae across five centers of the state was 57.5%. ESBL production was found to be 61.4% among E. coli and 46.2% among K. pneumoniae. ESBL production was significantly more among E. coli than K. pneumoniae. Significant variations in distribution of ESBL across the state was observed among E. coli isolates, but not among K. pneumoniae isolates. All ESBL producers demonstrated minimum inhibitory concentration levels ≥2 μg/ml towards cefotaxime, ceftazidime and ceftriaxone.

Conclusion: Overall prevalence of ESBL production among clinical isolates of E. coli and K. pneumoniae across Karnataka state was high. The prevalence of ESBL production was significantly higher with E. coli than K. pneumoniae isolates. Higher rates of resistance to ceftriaxone and cefotaxime than to ceftazidime suggests the possibility of presence of CTX-M type ESBLs. Of all the beta-lactam/beta-lactamase inhibitor combinations tested, cefepime-tazobactam demonstrated highest in-vitro activity against ESBL producers. There was no statistical difference in the transferability of plasmids among E. coli and K. pneumoniae.



Publication History

Article published online:
19 April 2020

© 2014.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL, et al. Redefining extended-spectrum beta-lactamases: Balancing science and clinical need. J Antimicrob Chemother 2009;63:1-4.
  • 2 Karas JA, Pillay DG, Muckart D, Sturm AW. Treatment failure due to extended spectrum beta-lactamase. J Antimicrob Chemother 1996;37:203-4.
  • 3 Calbo E, Freixas N, Xercavins M, Riera M, Nicolás C, Monistrol O, et al. Foodborne nosocomial outbreak of SHV1 and CTX-M-15-producing Klebsiella pneumoniaei: Epidemiology and control. Clin Infect Dis 2011;52:743-9.
  • 4 Doi Y, Paterson DL, Egea P, Pascual A, López-Cerero L, Navarro MD, et al. Extended-spectrum and CMY-type beta-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clin Microbiol Infect 2010;16:33-8.
  • 5 Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J, Park M, et al. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob Agents Chemother 2011;55:5666-75.
  • 6 Webster DP, Young BC, Morton R, Collyer D, Batchelor B, Turton JF, et al. Impact of a clonal outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniaei in the development and evolution of bloodstream infections by Klebsiella pneumoniaei and Escherichia coli: An 11 year experience in Oxfordshire, UK. J Antimicrob Chemother 2011;66:2126-35.
  • 7 Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement M100-S20. Vol. 30. In: Clinical and Laboratory Standards Institute. Wayne, PA: CLSI; 2010. p. 46.
  • 8 Robberts FJ, Kohner PC, Patel R. Unreliable extended-spectrum beta-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J Clin Microbiol 2009;47:358-61.
  • 9 Park YJ, Park SY, Oh EJ, Park JJ, Lee KY, Woo GJ, et al. Occurrence of extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis 2005;51:265-9.
  • 10 Manoharan A, Premalatha K, Chatterjee S, Mathai D, SARI Study Group. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian J Med Microbiol 2011;29:161-4.
  • 11 Harwalkar A, Sataraddi J, Gupta S, Yoganand R, Rao A, Srinivasa H. The detection of ESBL-producing Escherichia coli in patients with symptomatic urinary tract infections using different diffusion methods in a rural setting. J Infect Public Health 2013;6:108-14.
  • 12 Bhat PV, Sarkar A. Emergence and control of multidrug resistant organisms in small cities in India: A wake up call. Indian J Med Sci 2011;65:337-43.
  • 13 Eshwarappa M, Dosegowda R, Aprameya IV, Khan MW, Kumar PS, Kempegowda P. Clinico-microbiological profile of urinary tract infection in south India. Indian J Nephrol 2011;21:30-6.
  • 14 Kamath S, Mallaya S, Shenoy S. Nosocomial infections in neonatal intensive care units: Profile, risk factor assessment and antibiogram. Indian J Pediatr 2010;77:37-9.
  • 15 Vaidya VK. Horizontal transfer of antimicrobial resistance by extended-spectrum β lactamase-producing enterobacteriaceae. J Lab Physicians 2011;3:37-42.
  • 16 Sharma J, Sharma M, Ray P. Detection of TEM and SHV genes in Escherichia coli and Klebsiella pneumoniaei isolates in a tertiary care hospital from India. Indian J Med Res 2010;132:332-6.
  • 17 Mohamudha Parveen R, Manivannan S, Harish BN, Parija SC. Study of CTX-M type of extended spectrum β-lactamase among nosocomial isolates of Escherichia coli and Klebsiella pneumoniaei in South India. Indian J Microbiol 2012;52:35-40.
  • 18 Kaur M, Aggarwal A. Occurrence of the CTX-M, SHV and the TEM genes among the extended spectrum β-lactamase producing isolates of enterobacteriaceae in a Tertiary Care Hospital of North India. J Clin Diagn Res 2013;7:642-5.
  • 19 Priyadharsini RI, Kavitha A, Rajan R, Mathavi S, Rajesh KR. Prevalence of bla (CTX M) extended spectrum beta lactamase gene in enterobacteriaceae from critical care patients. J Lab Physicians 2011;3:80-3.
  • 20 Sarma JB, Bhattacharya PK, Kalita D, Rajbangshi M. Multidrug-resistant Enterobacteriaceae including metallo-β-lactamase producers are predominant pathogens of healthcare-associated infections in an Indian teaching hospital. Indian J Med Microbiol 2011;29:22-7.
  • 21 Pathak A, Marothi Y, Kekre V, Mahadik K, Macaden R, Lundborg CS. High prevalence of extended-spectrum β-lactamase-producing pathogens: Results of a surveillance study in two hospitals in Ujjain, India. Infect Drug Resist 2012;5:65-73.
  • 22 Chitnis S, Katara G, Hemvani N, Chitnis DS. Augmentation in zone of inhibition of cefoperazone/cefoperazone+sulbactum compares well with the clinical laboratory standard institute standard extended spectrum beta-lactamase detection method as well as the polymerase chain reaction method. Curr Drug Saf 2011;6:155-8.
  • 23 Rudresh SM, Nagarathnamma T. Extended spectrum β-lactamase producing Enterobacteriaceae and antibiotic co-resistance. Indian J Med Res 2011;133:116-8.
  • 24 Shobha KL, Ramachandra L, Rao G, Majumder S, Rao SP. Extended spectrum beta-lactamases (ESBL) in gram negative bacilli at a Tertiary Care Hospital. J Clin Diagn Res 2009;3:1307-12.
  • 25 Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ. CTX-M-type beta-lactamases: An emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000;14:137-42.
  • 26 Ananthan S, Subha A. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniaei and Escherichia coli. Indian J Med Microbiol 2005;23:20-3.
  • 27 Yu WL, Pfaller MA, Winokur PL, Jones RN. Cefepime MIC as a predictor of the extended-spectrum beta-lactamase type in Klebsiella pneumoniaei, Taiwan. Emerg Infect Dis 2002;8:522-4.
  • 28 Oteo J, Delgado-Iribarren A, Vega D, Bautista V, Rodríguez MC, Velasco M, et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents 2008;32:534-7.