RSS-Feed abonnieren
DOI: 10.3766/jaaa.23.8.4
Evaluation of a Transient Noise Reduction Strategy for Hearing Aids
Publikationsverlauf
Publikationsdatum:
06. August 2020 (online)
Background: Transient noise can be disruptive for people wearing hearing aids. Ideally, the transient noise should be detected and controlled by the signal processor without disrupting speech and other intended input signals. A technology for detecting and controlling transient noises in hearing aids was evaluated in this study.
Purpose: The purpose of this study was to evaluate the effectiveness of a transient noise reduction strategy on various transient noises and to determine whether the strategy has a negative impact on sound quality of intended speech inputs.
Research Design: This was a quasi-experimental study. The study involved 24 hearing aid users. Each participant was asked to rate the parameters of speech clarity, transient noise loudness, and overall impression for speech stimuli under the algorithm-on and algorithm-off conditions. During the evaluation, three types of stimuli were used: transient noises, speech, and background noises. The transient noises included “knife on a ceramic board,” “mug on a tabletop,” “office door slamming,” “car door slamming,” and “pen tapping on countertop.” The speech sentences used for the test were presented by a male speaker in Mandarin. The background noises included “party noise” and “traffic noise.” All of these sounds were combined into five listening situations: (1) speech only, (2) transient noise only, (3) speech and transient noise, (4) background noise and transient noise, and (5) speech and background noise and transient noise.
Results: There was no significant difference on the ratings of speech clarity between the algorithm-on and algorithm-off (t-test, p = 0.103). Further analysis revealed that speech clarity was significant better at 70 dB SLP than 55 dB SPL (p < 0.001). For transient noise loudness: under the algorithm-off condition, the percentages of subjects rating the transient noise to be somewhat soft, appropriate, somewhat loud, and too loud were 0.2, 47.1, 29.6, and 23.1%, respectively. The corresponding percentages under the algorithm-on were 3.0, 72.6, 22.9, and 1.4%, respectively. A significant difference on the ratings of the transient noise loudness was found between the algorithm-on and algorithm-off (t-test, p < 0.001). For overall impression for speech stimuli: under the algorithm-off condition, the percentage of subjects rating the algorithm to be not helpful at all, somewhat helpful, helpful, and very helpful for speech stimuli were 36.5, 20.8, 33.9, and 8.9%, respectively. Under the algorithm-on condition, the corresponding percentages were 35.0, 19.3, 30.7, and 15.0%, respectively. Statistical analysis revealed there was a significant difference on the ratings of overall impression on speech stimuli. The ratings under the algorithm-on condition were significantly more helpful for speech understanding than the ratings under algorithm-off (t-test, p < 0.001).
Conclusions: The transient noise reduction strategy appropriately controlled the loudness for most of the transient noises and did not affect the sound quality, which could be beneficial to hearing aid wearers.