Vet Comp Orthop Traumatol 2014; 27(05): 387-394
DOI: 10.3415/VCOT-14-03-0039
Original Research
Schattauer GmbH

Arthroscopy of the normal cadaveric ovine femorotibial joint: a systematic approach to the cranial and caudal compartments

R. B. Modesto
1   Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, Minnesota, USA
,
K. A. Mansmann
2   Arthroscopy Research Institute, Orthopaedic Sports & Arthritis Surgery, Paoli, PA, USA
,
T. P. Schaer
3   Comparative Orthopaedic Research Laboratory, Department of Clinical Studies, New Bolton Center, University of Pennsylvania, PA, USA
› Author Affiliations
Further Information

Publication History

Received: 09 March 2014

Accepted: 13 July 2014

Publication Date:
22 December 2017 (online)

Summary

Objectives: Preclinical studies using large animal models play an intergral part in translational research. For this study, our objectives were: to develop and validate arthroscopic approaches to four compartments of the stifle joint as determined via the gross and arthroscopic anatomy of the cranial and caudal aspects of the joint.

Methods: Cadaveric hindlimbs (n = 39) were harvested from mature ewes. The anatomy was examined by tissue dissection (n = 6), transverse sections (n = 4), and computed tomography (n = 4). The joint was arthroscopically explored in 25 hindlimbs.

Results: A cranio-medial portal was created medial to the patellar ligament. The craniolateral portal was made medial to the extensor digitorum longus tendon. The medial femoral condyle was visible, as well as the cranial cruciate ligament, caudal cruciate ligament and both menisci with the inter-meniscal ligament. Valgus stress improved visibility of the caudal horn of the medial meniscus and tibial plateau. To explore the caudal compartments, a portal was created 1 cm proximal to the most caudal aspect of the tibial condyle. Both femoral condyles, menisci, caudal cruciate ligament, the popliteal tendon and the menisco-femoral ligament were visible. The common peroneal nerve and popliteal artery and vein are vulnerable structures to injury during arthroscopy.

Clinical significance: The arthroscopic approach developed in this research is ideal to evaluate the ovine stifle joint.

 
  • References

  • 1 Martini L, Fini M, Giavaresi G. et al Sheep model in orthopedic research: a literature review. Comp Med 2001; 51: 292-299.
  • 2 Osterhoff G, Loffler S, Steinke H. et al Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 2011; 18: 98-103.
  • 3 Chevrier A, Nelea M, Hurtig MB. et al Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res 2009; 27: 1197-1203.
  • 4 Orth P, Madry H. A low morbidity surgical approach to the sheep femoral trochlea. BMC Musculoskelet Disord 2013; 14: 5.
  • 5 Allen MJ, Houlton JE, Adams SB. et al The surgical anatomy of the stifle joint in sheep. Vet Surg 1998; 27: 596-605.
  • 6 Dattena M, Pilichi S, Rocca S. et al Sheep embryonic stem-like cells transplanted in full-thickness cartilage defects. J Tissue Eng Regen Med 2009; 3: 175-187.
  • 7 Munirah S, Samsudin OC, Chen HC. et al Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs: an experimental study in sheep. J Bone Joint Surg Br 2007; 89: 1099-1109.
  • 8 Siebert CH, Miltner O, Weber M. et al Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy 2003; 19: 182-187.
  • 9 Rothwell AG. Synovium transplantation onto the cartilage denuded patellar groove of the sheep knee joint. Orthopedics 1990; 13: 433-442.
  • 10 Phillips TW, Johnston G, Wood P. Selection of an animal model for resurfacing hip arthroplasty. J Arthroplasty 1987; 2: 111-117.
  • 11 Marquass B, Schulz R, Hepp P. et al Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med 2011; 39: 1401-1412.
  • 12 Magee T, Shapiro M, Williams D. MR accuracy and arthroscopic incidence of meniscal radial tears. Skeletal Radiol 2002; 31: 686-689.
  • 13 Mahn MM, Cook JL, Cook CR. et al Arthroscopic verification of ultrasonographic diagnosis of meniscal pathology in dogs. Vet Surg 2005; 34: 318-323.
  • 14 Pozzi A, Hildreth 3rd BE, Rajala-Schultz PJ. Comparison of arthroscopy and arthrotomy for diagnosis of medial meniscal pathology: an ex vivo study. Vet Surg 2008; 37: 749-755.
  • 15 Smith TO, Simpson M, Ejindu V. et al The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol 2013; 23: 335-344.
  • 16 Kijowski R, Blankenbaker DG, Munoz Del Rio A. et al Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267: 503-513.
  • 17 Chen CH, Liu YS, Chou PH. et al MR grading system of osteochondritis dissecans lesions: comparison with arthroscopy. Eur J Radiol 2013; 82: 518-525.
  • 18 Kim YM, Joo YB, Cha SM. et al Role of the mechanical axis of lower limb and body weight in the horizontal tear and root ligament tear of the posterior horn of the medial meniscus. Int Orthop 2012; 36: 1849-1855.
  • 19 Choi CJ, Choi YJ, Song IB. et al Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears. Clin Orthop Surg 2011; 3: 128-132.
  • 20 Ozkoc G, Circi E, Gonc U. et al Radial tears in the root of the posterior horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 2008; 16: 849-854.
  • 21 Nikolic DK. Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee. Arthroscopic analysis. Knee Surg Sports Traumatol Arthrosc 1998; 6: 26-30.
  • 22 Duygulu F, Demirel M, Atalan G. et al Effects of intra-articular administration of autologous bone marrow aspirate on healing of full-thickness meniscal tear: an experimental study on sheep. Acta Orthop Traumatol Turc 2012; 46: 61-67.
  • 23 Kon E, Filardo G, Tschon M. et al Tissue engineering for total meniscal substitution: animal study in sheep model--results at 12 months. Tissue Eng Part A 2012; 18: 1573-1582.
  • 24 Maher SA, Rodeo SA, Doty SB. et al Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 2010; 26: 1510-1519.
  • 25 McNickle AG, Wang VM, Shewman EF. et al Performance of a sterile meniscal allograft in an ovine model. Clin Orthop Relat Res 2009; 467: 1868-1876.
  • 26 Field JR, Gunatillake P, Adhikari R. et al Use of biodegradable urethane-based adhesives to appose meniscal defect edges in an ovine model: a preliminary study. Aust Vet J 2008; 86: 229-234.
  • 27 Hette K, Rahal SC, Volpi RS. et al Arthroscopy of the stifle joint in sheep. Pesquisa Veterinaria Brasileira 2008; 28: 119-123.
  • 28 Vandeweerd JM, Kirschvink N, Muylkens B. et al A study of the anatomy and injection techniques of the ovine stifle by positive contrast arthrography, computed tomography arthrography and gross anatomical dissection. Vet J 2012; 193: 426-432.
  • 29 Desrochers A, St-Jean G, Cash WC. et al Characterization of anatomic communications of the fetlock in cattle, using intra-articular latex injection and positive-contrast arthrography. Am J Vet Res 1997; 58: 710-712.
  • 30 May NDS. The hindlimb. In May NDS. editor The anatomy of the sheep, a dissection manual. 3rd ed. St. Lucia, Australia: University of Queensland Press; 1970: 102-122.
  • 31 Habel RE. Part Four. The Pelvic Limb. In Habel RE. editor Guide of dissection of domestic ruminants. 4th ed. Ithaca, NY: R.E. Habel 1989; 130-132.
  • 32 Seitz H, Hausner T, Schlenz I. et al Vascular anatomy of the ovine anterior cruciate ligament. A macroscopic, histological and radiographic study. Arch Orthop Trauma Surg 1997; 116: 19-21.
  • 33 Lysholm J, Gillquist J, Liljedahl SO. Arthroscopy in the early diagnosis of injuries to the knee joint. Acta Orthop Scand 1981; 52: 111-118.
  • 34 Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: A 10-year study. Knee 2006; 13: 184-188.
  • 35 Badlani JT, Borrero C, Golla S. et al The effects of meniscus injury on the development of knee osteoarthritis: data from the osteoarthritis initiative. Am J Sports Med 2013; 41: 1238-1244.
  • 36 Naranje S, Mittal R, Nag H. et al Arthroscopic and magnetic resonance imaging evaluation of meniscus lesions in the chronic anterior cruciate ligament-deficient knee. Arthroscopy 2008; 24: 1045-1051.
  • 37 Van der Esch M, Knoop J, Hunter DJ. et al The association between reduced knee joint proprioception and medial meniscal abnormalities using MRI in knee osteoarthritis: results from the Amsterdam osteoarthritis cohort. Osteoarthritis Cartilage 2013; 21: 676-681.
  • 38 Sihvonen R, Paavola M, Malmivaara A. et al Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med 2013; 369: 2515-2524.
  • 39 Carson Jr WG. Arthroscopic techniques to improve access to posterior meniscal lesions. Clin Sports Med 1990; 9: 619-632.
  • 40 Amis A, Bull A, Amis A. et al Pelvic girdle and lower limb. In Mahadevan V. editor Gray's Anatomy. 40th ed. London, UK: Elsevier; 2008: 1393-1410.
  • 41 Metcalf RW. The torn medial meniscus. In Parisien JS. editor Arthroscopic Surgery. New York, NY: McGraw Hill; 1988: 93-110.
  • 42 Schena A, Ross G. Knee Arthroscopy: Technique and Normal Anatomy. In McKeon BP, Bono JV, Richmond JC. editor Knee Arthroscopy. New York, NY: Springer Science+Business Media, LLC: 2009: 1-10.
  • 43 Trumble TN, Stick JA, Arnoczky SP. et al Consideration of anatomic and radiographic features of the caudal pouches of the femorotibial joints of horses for the purpose of arthroscopy. Am J Vet Res 1994; 55: 1682-1689.