Vet Comp Orthop Traumatol 2011; 24(01): 1-8
DOI: 10.3415/VCOT-10-03-0040
Review Article
Schattauer GmbH

The rationale behind novel bone grafting techniques in small animals

G. R. Ragetly
1   Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
,
D. J. Griffon
1   Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
› Author Affiliations
Further Information

Publication History

Received: 17 March 2010

Accepted: 24 June 2010

Publication Date:
19 December 2017 (online)

Summary

Autograft is considered ideal for grafting procedures, providing osteoinductive growth factors, osteogenic cells, and an osteoconductive scaffold. Limitations, however, exist regarding donor site morbidity and graft availability. Although allograft provides an osteoconductive matrix with some osteoinductivity, its availability is limited. To achieve optimal bone graft properties, researchers are developing new materials with the goal of designing synthetics as close to autograft as possible while still facilitating their clinical use. However, the constant evolution of internal fixation stimulates the search for growth factors and cells which could stimulate bone healing.

 
  • References

  • 1 Hoffer MJ, Griffon DJ, Schaeffer DJ. et al. Clinical applications of demineralized bone matrix: a retrospective and case-matched study of seventy-five dogs. Vet Surg 2008; 37: 639-647.
  • 2 Fitch RB, Kerwin SC, Newman-Gage H. et al. Bone autografts and allografts in dogs. Comp Cont Educ Pract Vet 1997; 19: 558-575.
  • 3 Drosos GI, Kazakos KI, Kouzoumpasis P. et al. Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury 2007; 38 (Suppl. 04) S13-21.
  • 4 Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3: 192-195.
  • 5 Penwick RC, Mosier DA, Clark DM. Healing of ca-nine autogenous cancellous bone graft donor sites. Vet Surg 1991; 20: 229-234.
  • 6 Ferguson JF. Fracture of the humerus after cancellous bone graft harvesting in a dog. J Small Anim Pract 1996; 37: 232-234.
  • 7 Kerwin SC, Lewis DD, Elkins AD. et al. Deep-frozen allogeneic cancellous bone grafts in 10 dogs: a case series. Vet Surg 1996; 25: 18-28.
  • 8 Bergman RL, Levine JM, Coates JR. et al. Cervical spinal locking plate in combination with cortical ring allograft for a one level fusion in dogs with cervical spondylotic myelopathy. Vet Surg 2008; 37: 530-536.
  • 9 Dorea HC, McLaughlin RM, Cantwell HD. et al. Evaluation of healing in feline femoral defects filled with cancellous autograft, cancellous allograft or Bioglass. Vet Comp Orthop Traumatol 2005; 18: 157-168.
  • 10 Toombs JP, Wallace LJ. Evaluation of autogeneic and allogeneic cortical chip grafting in a feline tibial nonunion model. Am J Vet Res 1985; 46: 519-528.
  • 11 Helfet DL, Haas NP, Schatzker J. et al. AO philosophy and principles of fracture management-its evolution and evaluation. J Bone Joint Surg Am 2003; 85A: 1156-1160.
  • 12 De Long Jr WG, Einhorn TA, Koval K. et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. Bone Joint Surg Am 2007; 89: 649-658.
  • 13 Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000; 371: 10-27.
  • 14 Friedlaender GE, Horowitz MC. Immune responses to osteochondral allografts: nature and significance. Orthopedics 1992; 15: 1171-1175.
  • 15 Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 2002; 84: 1093-1110.
  • 16 Liptak JM, Dernell WS, Ehrhart N. et al. Cortical allograft and endoprosthesis for limb-sparing surgery in dogs with distal radial osteosarcoma: a prospective clinical comparison of two different limb-sparing techniques. Vet Surg 2006; 35: 518-533.
  • 17 Peltier LF. The use of plaster of Paris to fill defects in bone. Clin Orthop 1961; 21: 1-31.
  • 18 Elkins AD, Jones LP. The effects of plaster of Paris and autogenous cancellous bone on the healing of cortical defects in the femurs of dogs. Vet Surg 1988; 17: 71-76.
  • 19 Kuhne JH, Bartl R, Frisch B. et al. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand 1994; 65: 246-252.
  • 20 Izumisawa Y, Seno T, Abe R. et al. Axial correction of pes varus by transverse-opening wedge osteotomy and T-plate fixation with beta-tricalcium phosphate (beta-TCP) transplantation in dachshunds. J Vet Med Sci 2005; 67: 437-440.
  • 21 Field JR, McGee M, Wildenauer C. et al. The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol 2009; 22: 87-95.
  • 22 Segal U, Shani J. Surgical management of large segmental femoral and radial bone defects in a dog: through use of a cylindrical titanium mesh cage and a cancellous bone graft. Vet Comp Orthop Traumatol 2010; 23: 66-70.
  • 23 Hutchinson GS, Griffon DJ, Siegel AM. et al. Evaluation of an osteoconductive resorbable calcium phosphate cement and polymethylmethacrylate for augmentation of orthopedic screws in the pelvis of canine cadavers. Am J Vet Res 2005; 66: 1954-1960.
  • 24 Griffon DJ, Stoller A, Schaeffer DJ. et al. Evaluation of 2 cement techniques for augmentation of stripped 1.5 mm screw sites in the distal metaphysis of feline radii. Vet Surg 2005; 34: 223-230.
  • 25 Zimmermann R, Gabl M, Lutz M. et al. Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 2003; 123: 22-27.
  • 26 Mattsson P, Larsson S. Stability of internally fixed femoral neck fractures augmented with resorbable cement. A prospective randomized study using radiostereometry. Scand J Surg 2003; 92: 215-219.
  • 27 Nolff MC, Gellrich NC, Hauschild G. et al. Comparison of two beta-tricalcium phosphate composite grafts used for reconstruction of mandibular critical size bone defects. Vet Comp Orthop Traumatol 2009; 22: 96-102.
  • 28 Rabillard M, Grand JG, Dalibert E. et al. Effects of autologous platelet rich plasma gel and calcium phosphate biomaterials on bone healing in an ulnar ostectomy model in dogs. Vet Comp Orthop Traumatol 2009; 22: 460-466.
  • 29 Schmokel HG, Stein S, Radke H. et al. Treatment of tibial fractures with plates using minimally invasive percutaneous osteosynthesis in dogs and cats. J Small Anim Pract 2007; 48: 157-160.
  • 30 Hudson CC, Pozzi A, Lewis DD. Minimally invasive plate osteosynthesis: applications and techniques in dogs and cats. Vet Comp Orthop Traumatol 2009; 22: 175-182.
  • 31 Pozzi A, Lewis D. Surgical approaches for minimally invasive plate osteosynthesis in dogs. Vet Comp Orthop Traumatol 2009; 22: 316-320.
  • 32 Klann R, Lloyd W, Lacy S. et al. A novel hydrogel co-polymer reduces scar formation and increase TGF b3 gene expression. Proceedings of the 15th Annual Symposium on Advanced Wound Care 2002. April 27-30. Baltimore, MD; USA:
  • 33 Urist MR. Bone: formation by autoinduction. Science 1965; 150: 893-899.
  • 34 Frenkel SR, Moskovich R, Spivak J. et al. Demineralized bone matrix. Enhancement of spinal fusion. Spine 1993; 18: 1634-1639.
  • 35 Lafaver S, Miller NA, Stubbs WP. et al. Tibial tube-rosity advancement for stabilization of the canine cranial cruciate ligament-deficient stifle joint: surgical technique, early results, and complications in 101 dogs. Vet Surg 2007; 36: 573-586.
  • 36 Veillette CJ, McKee MD. Growth factors-BMPs, DBMs, and buffy coat products: are there any proven differences amongst them?. Injury 2007; 38: S38-48.
  • 37 Simman R, Hoffmann A, Bohinc RJ. et al. Role of platelet-rich plasma in acceleration of bone fracture healing. Ann Plast Surg 2008; 61: 337-344.
  • 38 Kasten P, Vogel J, Geiger F. et al. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 2008; 29: 3983-3992.
  • 39 Gautschi OP, Frey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg 2007; 77: 626-631.
  • 40 Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2: 81-96.
  • 41 Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol 2007; 20: 151-158.
  • 42 Vaibhav B, Nilesh P, Vikram S. et al. Bone morphogenic protein and its application in trauma cases: a current concept update. Injury 2007; 38: 1227-1235.
  • 43 Kirker-Head CA, Boudrieau RJ, Kraus KH. Use of bone morphogenetic proteins for augmentation of bone regeneration. J Am Vet Med Assoc 2007; 231: 1039-1055.
  • 44 Milovancev M, Muir P, Manley PA. et al. Clinical application of recombinant human bone morphogenetic protein-2 in 4 dogs. Vet Surg 2007; 36: 132-140.
  • 45 Schmoekel HG, Weber FE, Hurter K. et al. Enhancement of bone healing using non-glycosylated rhBMP-2 released from a fibrin matrix in dogs and cats. J Small Anim Pract 2005; 46: 17-21.
  • 46 Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 2000; 43: 65-92.
  • 47 Ferrigno CRA, Nina MID, Fantoni DT. Comparative study of the treatment of radius and ulna fractures with plates and the aid of a bone morphogenetic protein or with plates alone in dogs under six kilograms. Proceedings of the American College of Veterinary Surgeons Meeting 2008. October 22-24. Davis, CA; USA:
  • 48 Spector DI, Keating JH, Boudrieau RJ. Immediate mandibular reconstruction of a 5 cm defect using rhBMP-2 after partial mandibulectomy in a dog. Vet Surg 2007; 36: 752-759.
  • 49 Bernard F, Furneaux R, Adrega Da Silva C. et al. Treatment with rhBMP-2 of extreme radial bone atrophy secondary to fracture management in an Italian Greyhound. Vet Comp Orthop Traumatol 2008; 21: 64-68.
  • 50 Boudrieau RJ, Mitchell SL, Seeherman H. Mandibular reconstruction of a partial hemimandibulectomy in a dog with severe malocclusion. Vet Surg 2004; 33: 119-130.
  • 51 Lewis JR, Boudrieau RJ, Reiter AM. et al. Mandibular reconstruction after gunshot trauma in a dog by use of recombinant human bone morphogenetic protein-2. J Am Vet Med Assoc 2008; 233: 1598-1604.
  • 52 Cook SD, Baffes GC, Wolfe MW. et al. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop Relat Res 1994; 301: 302-312.
  • 53 Faria ML, Lu Y, Heaney K. et al. Recombinant human bone morphogenetic protein-2 in absorbable collagen sponge enhances bone healing of tibial osteotomies in dogs. Vet Surg 2007; 36: 122-131.
  • 54 Schmiedt CW, Lu Y, Heaney K. et al. Comparison of two doses of recombinant human bone morphogenetic protein in absorbable collagen sponges for bone healing in dogs. Am J Vet Res 2007; 68: 834-840.
  • 55 Govender S, Csimma C, Genant HK. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 84: 2123-2134.
  • 56 Smucker JD, Rhee JM, Singh K. et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 2006; 31: 2813-2819.
  • 57 Scott J. Withdrawal of a paper. J Bone Joint Surg Br 2009; 91: 285-286.
  • 58 Mason DR, Renberg WC. Postsurgical enhancement of fracture repair: biologic alternatives to bone grafting. Comp Cont Educ Pract Vet 2001; 23: 272-279.
  • 59 Zachos TA, Bertone AL. Growth factors and their potential therapeutic applications for healing of musculoskeletal and other connective tissues. Am J Vet Res 2005; 66: 727-738.
  • 60 Patterson TE, Kumagai K, Griffith L. et al. Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am 2008; 90: 111-119.
  • 61 Aubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999; 72: 396-410.
  • 62 Lindholm TS, Urist MR. A quantitative analysis of new bone formation by induction in compositive grafts of bone marrow and bone matrix. Clin Orthop Relat Res 1980; 150: 288-300.
  • 63 Tiedeman JJ, Connolly JF, Strates BS. et al. Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin Orthop Relat Res 1991; 268: 294-302.
  • 64 Muschler GF, Nitto H, Matsukura Y. et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 2003; 407: 102-118.
  • 65 Neupane M, Chang CC, Kiupel M. et al. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 2008; 14: 1007-1015.
  • 66 Black LL, Gaynor J, Adams C. et al. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 2008; 9: 192-200.
  • 67 Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005; 34: 415-423.
  • 68 Kraus KH, Kirker-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg 2006; 35: 232-242.
  • 69 Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 2566-2573.