Nuklearmedizin 2010; 49(05): 173-182
DOI: 10.3413/nukmed-0312
Original article
Schattauer GmbH

Combined evaluation of myocardial perfusion and coronary morphology in the identification of subclinical CAD

Radiation exposure of 13N-ammonia PET/CTKombinierte Untersuchung der myokardialen Perfusion und koronaren Morphologie für die Identifizierung einer subklinischen koronarer Herzerkrankung (KHK)Strahlenexposition der kardialen 13N-Ammoniak-PET/CT-Untersuchung
G. Vincenti
1   Department of Internal Medicine, Cardiovascular Center, Nuclear Cardiology, University Hospital of Geneva, Switzerland
,
A. Quercioli
1   Department of Internal Medicine, Cardiovascular Center, Nuclear Cardiology, University Hospital of Geneva, Switzerland
,
H. Zaidi
2   Department of Radiology, Division of Nuclear Medicine, University Hospital of Geneva, Switzerland
,
R. Nkoulou
1   Department of Internal Medicine, Cardiovascular Center, Nuclear Cardiology, University Hospital of Geneva, Switzerland
,
S. Dewarrat
2   Department of Radiology, Division of Nuclear Medicine, University Hospital of Geneva, Switzerland
,
O. Rager
2   Department of Radiology, Division of Nuclear Medicine, University Hospital of Geneva, Switzerland
,
G. Ambrosio
3   Division of Cardiology, University Hospital of Perugia, Italy
,
Y. Seimbille
2   Department of Radiology, Division of Nuclear Medicine, University Hospital of Geneva, Switzerland
,
F. Mach
1   Department of Internal Medicine, Cardiovascular Center, Nuclear Cardiology, University Hospital of Geneva, Switzerland
,
O. Ratib
2   Department of Radiology, Division of Nuclear Medicine, University Hospital of Geneva, Switzerland
,
T. H. Schindler
1   Department of Internal Medicine, Cardiovascular Center, Nuclear Cardiology, University Hospital of Geneva, Switzerland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 23. April 2010

accepted in revised form: 07. März 2010

Publikationsdatum:
24. Januar 2018 (online)

Summary

Purpose: To evaluate the mean effective radiation dose of 13N-ammonia PET/CT and ECGpulsing CT angiography (CTA) in the evaluation of myocardial perfusion, myocardial blood flow (MBF) and coronary morphology for the identification of subclinical CAD. Patients, material, methods: Following rest-stress 13N-ammonia PET/CT perfusion imaging and MBF quantification, ECG-pulsing CTA at a pulse window of 70% of the R-R cycle was performed in ten healthy controls and in sixteen individuals with cardiovascular risk factors. Individual radiation dose exposure for ECG-pulsing CTA was estimated from the dose-length product. Results: PET demonstrated normal perfusion in all study individuals, while hyperemic MBFs during dipyridamole stimulation and the myocardial flow reserve (MFR) in cardiovascular risk individuals were significantly lower than in healthy controls (1.34 ± 0.26 vs. 2.28 ± 0.47 ml/g/min and 1.48 ± 0.39 vs. 3.24 ± 0.81, both p . 0.0001). Further, ECG-pulsing CTA identified mild calcified and non-calcified coronary plaque burden in 7 (43%) individuals of the cardiovascular risk group. Rest-stress 13N-ammonia PET/CT perfusion study yielded a mean effective radiation dose of 3.07 ± 0.06 mSv (2.07 ± 0.06 mSv from the rest-stress 13N-ammonia injections and 1.0 mSv from the 2 CT transmission scans), while ECG-pulsing CTA was associated with 5.57 ± 2.00 mSv. The mean effective radiation dose of the combined 13N-ammonia PET/CT and ECG-pulsing CTA exams in the evaluation of myocardial perfusion and coronary morphology was 8.0 ± 1.5 mSv. Conclusion: 13N-ammonia PET/CT and ECG-pulsing CTA affords cardiac hybrid imaging studies in the evaluation of subclinical CAD with a relatively low mean effective radiation exposure of 8.0 ± 1.5mSv.

Zusammenfassung

Ziel: Erfassung der mittleren effektiven Strahlendosis bei kombinierter Anwendung der kardialen 13N-Ammoniak PET/CT und EKG-getriggerten CTAngiographie (CTA) zur Bestimmung der myokardialen Perfusion, des myokardialen Blutflusses (MBF), und der koronaren Morphologie für die Identifizierung einer subklinischen koronarer Herzerkrankung (KHK). Patienten, Methoden: Bei 10 Gesunden (Kontrollen) und 16 Personen mit kardiovaskulären Risikofaktoren wurde im Anschluss einer Ruhe-Stress-13N-Ammoniak-PET/CT-Perfusions- und MBF-Untersuchung, eine EKG-getriggerte CTA mit einem Trigger-Fenster von 70% des R-R-Zyklus durchgeführt. Die individuelle Strahlendosis-Exposition für die EKGgetriggerte CTA wurde mittels Dosis-Längen- Produkt ermittelt. Ergebnisse: Die PET-Untersuchung ermittelte bei allen Personen eine normale myokardiale Perfusion, wohingegen der hyperämische MBF-Anstieg während Dipyridamol-Stimulation und die myokardiale Flussreserve (MFR) in der kardiovaskulären Risiko-Gruppe im Vergleich zu Kontrollen deutlich vermindert waren (1,34 ± 0,26 vs. 2,28 ± 0,47 ml/g/min und 1,48 ± 0,39 vs. 3,24 ± 0,81, beide p ≤ 0,0001). Des Weiteren wurden mittels EKG-getriggerte CTA kalzifizierte und nicht-kalzifizierte koronare Plaque-Bildung in 7 (43%) der kardiovaskulären Risko-Gruppe identifiziert. Die Ruhe-Stress- 13N-Ammoniak-PET/CT-Untersuchung ergab eine mittlere effektive Strahlendosis von 3,07 ± 0,06 mSv (2,07 ± 0,06 mSv von den Ruhe- Stress 13N-Ammoniak Injektionen und 1,0 mSv von den 2 CT Transmissions-Scans), während die EKG-getriggerte CTA mit eine Strahlenbelastung von 5,57 ± 2,00 mSv assoziiert war. Die kombinierte Anwendung einer kardialen 13N-Ammoniak- PET/CT und EKG-getriggerten CTA zur Bestimmung der myokardialen Perfusion und der koronaren Morphologie ergab schlussendlich eine mittlere effektive Strahlendosis von 8.0 ± 1.5 mSv. Schlussfolgerung: Die kombinierte Anwendung einer kardialen 13N-Ammoniak PET/CT und EKG-getriggerten CTA erlaubt kardiale Hybrid- Untersuchungen für die Identifizierung einer subklinischen KHK mit relativ geringer mittlerer effektiver Strahlenbelastung von 8.0 ± 1.5 mSv.

 
  • References

  • 1 Javadi M, Mahesh M, McBride G. et al. Lowering radiation dose for integrated assessment of coronary morphology and physiology: first experience with step-and-shoot CT angiography in a rubidium 82 PET-CT protocol. J Nucl Cardiol 2008; 15: 783-790.
  • 2 Namdar M, Hany TF, Koepfli P. et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 2005; 46: 930-935.
  • 3 Schindler TH, Zhang XL, Vincenti G. et al. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007; 14: 589-603.
  • 4 Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol 2009; 54: 1-15.
  • 5 Schelbert HR. Coronary circulatory function abnormalities in insulin resistance: insights from positron emission tomography. J Am Coll Cardiol 2009; 53: S3-8.
  • 6 Van Werkhoven JM, Schuijf JD, Gaemperli O. et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 2009; 53: 623-632.
  • 7 Schindler TH, Nitzsche EU, Schelbert HR. et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005; 45: 1505-1512.
  • 8 Herzog BA, Husmann L, Valenta I. et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009; 54: 150-156.
  • 9 Hausleiter J, Meyer T, Hadamitzky M. et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006; 113: 1305-1310.
  • 10 Husmann L, Valenta I, Gaemperli O. et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 2008; 29: 191-197.
  • 11 Kajander S, Ukkonen H, Sipila H. et al. Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Funct Imaging 2009; 29: 81-88.
  • 12 Grundy SM, Pasternak R, Greenland P. et al. Assessment of cardiovascular risk by use of multiple-risk- factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999; 100: 1481-1492.
  • 13 DeGrado TR, Hanson MW, Turkington TG. et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol 1996; 3: 494-507.
  • 14 Koepfli P, Wyss CA, Namdar M. et al. Beta-adrener- gic blockade and myocardial perfusion in coronary artery disease: differential effects in stenotic versus remote myocardial segments. J Nucl Med 2004; 45: 1626-1631.
  • 15 Einstein AJ, Moser KW, Thompson RC. et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007; 116: 1290-305.
  • 16 Radiation dose to patients from radiopharmaceuticals (Addendum 2 to ICRP Publication 53): ICRP Publication 80. Ann ICRP 1998; 28: 1-126.
  • 17 Austen WG, Edwards JE, Frye RL. et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975; 51: 5-40.
  • 18 Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006; 13: 19-23.
  • 19 Nosske D, Minkov V, Brix G. Establishment and application of diagnostic reference levels for nuclear medicine procedures in Germany. Nuklearmedizin 2004; 43: 79-84.
  • 20 Hausleiter J, Meyer T, Hermann F. et al. Estimated radiation dose associated with cardiac CT angiography. JAMA 2009; 301: 500-507.
  • 21 Gaemperli O, Schepis T, Koepfli P. et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2007; 34: 1162-1171.
  • 22 Pazhenkottil AP, Herzog BA, Husmann L. et al. Noninvasive assessment of coronary artery disease with CT coronary angiography and SPECT: a novel dose-saving fast-track algorithm. Eur J Nucl Med Mol Imaging 2010; 37: 522-527.
  • 23 Siegrist PT, Husmann L, Knabenhans M. et al. 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging 2008; 35: 889-895.
  • 24 Husmann L, Herzog BA, Gaemperli O. et al. Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only singlephoton emission computed tomography/computed tomography hybrid imaging: comparison of prospective electrocardiogram-triggering vs. retrospective gating. Eur Heart J 2009; 30: 600-607.
  • 25 Hirai N, Horiguchi J, Fujioka C. et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 2008; 248: 424-430.
  • 26 Earls JP, Berman EL, Urban BA. et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 2008; 246: 742-753.
  • 27 Shuman WP, Branch KR, May JM. et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 2008; 248: 431-437.
  • 28 Achenbach S, Marwan M, Ropers D. et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 2010; 31: 340-346.
  • 29 Sampson UK, Dorbala S, Limaye A. et al. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/ computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007; 49: 1052-1058.
  • 30 Lautamaki R, George RT, Kitagawa K. et al. Rubid- ium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009; 36: 576-586.
  • 31 Lindner O, Burchert W, Bengel FM. et al. Myocardial perfusion scintigraphy 2008 in Germany - Results of the fourth query. Nuklearmedizin 2010; 49: 65-72.
  • 32 Lindner O, Burchert W, Bengel FM. et al. Myocardial perfusion scintigraphy 2007 in Germany--results of the query and current status. Nuklearmedizin 2009; 48: 131-137.
  • 33 Schäfers M, Bengel F, Büll U. et al. Position paper nuclear cardiology: update 2008. Nuklearmedizin 2009; 48: 71-78.
  • 34 Schindler TH, Cardenas J, Prior JO. et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol 2006; 47: 1188-1195.
  • 35 Valenta I, Treyer V, Husmann L. et al. New reconstruction algorithm allows shortened acquisition time for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2010; 37: 750-757.
  • 36 Kaufmann PA. 82-Rubidium--the dawn of cardiac PET in Europe?. Eur J Nucl Med Mol Imaging 2007; 34: 1963-1964.
  • 37 Brown TL, Merrill J, Hill P, Bengel FM. Relationship of coronary calcium and myocardial perfusion in individuals with chest pain. Assessed by integrated rubidium-82 PET-CT. Nuklearmedizin 2008; 47: 255-260.
  • 38 Schindler TH, Campisi R, Dorsey D. et al. Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-me- nopausal women with medically treated cardiovascular risk factors. Eur Heart J 2009; 30: 978-986.
  • 39 Schindler TH, Cadenas J, Facta AD. et al. Improvement in coronary endothelial function is independently associated with a slowed progression of coronary artery calcification in type 2 diabetes mellitus. Eur Heart J 2009; 30: 3064-3073.
  • 40 Schindler TH, Facta AD, Prior JO. et al. Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 2009; 36: 219-229.
  • 41 Schindler TH, Zhang XL, Vincenti G. et al. Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. J Nucl Cardiol 2007; 14: 688-697.
  • 42 Dorbala S, Hassan A, Heinonen T. et al. Coronary vasodilator reserve and Framingham risk scores in subjects at risk for coronary artery disease. J Nucl Cardiol 2006; 13: 761-767.
  • 43 Graf S, Khorsand A, Gwechenberger M. et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med 2007; 48: 175-181.