Nuklearmedizin 2017; 56(03): 91-96
DOI: 10.3413/Nukmed-0867-16-12
Original article
Schattauer GmbH

Differences in sodium fluoride-18 uptake in the normal skeleton depending on the location and characteristics of the bone

Unterschiede in der Natriumfluorid-18-Aufnahme im Skelett in Abhängigkeit von Lokalisation und Charakteristika des Knochens
Shintaro Nawata
1   Yokohama City University, Radiology, Yokohama, Japan
,
Tomohiro Kaneta
1   Yokohama City University, Radiology, Yokohama, Japan
,
Matsuyoshi Ogawa
1   Yokohama City University, Radiology, Yokohama, Japan
,
Yoshinobu Ishiwata
1   Yokohama City University, Radiology, Yokohama, Japan
,
Naomi Kobayashi
2   Yokohama City University, Orthopaedic Surgery, Yokohama, Japan
,
Ayako Shishikura-Hino
1   Yokohama City University, Radiology, Yokohama, Japan
,
Keisuke Yoshida
1   Yokohama City University, Radiology, Yokohama, Japan
,
Yutaka Inaba
2   Yokohama City University, Orthopaedic Surgery, Yokohama, Japan
,
Tomoyuki Saito
2   Yokohama City University, Orthopaedic Surgery, Yokohama, Japan
,
Tomio Inoue
1   Yokohama City University, Radiology, Yokohama, Japan
› Author Affiliations
Further Information

Publication History

received: 02 December 2016

accepted in revised form: 12 April 2017

Publication Date:
02 January 2018 (online)

Summary

Aim: The aim of this study was to evaluate the normal distribution of sodium fluoride-18 (NaF-18) and to clarify the differences in uptake according to location and the type of the bone using positron emission tomography (PET) / computed tomography (CT). Methods: We retrospectively reviewed NaF-18 PET/CT images from 30 patients with hip joint disorders. PET/CT scans were performed 40 min after injection of approximately 185 MBq of NaF-18. To evaluate the relationship between the distribution of NaF-18 uptake and bone density, we compared the maximum standardised uptake values (SUVmax) on PET and the Hounsfield Units (HUs) on CT of the lumbar vertebra, ilium, and proximal and distal femurs. Regions of interests were defined both outside and inside the cortical bone to measure whole bone and cancellous bone only, respectively. Results: The distribution of NaF-18 differed according to the skeletal site. The lumbar vertebra showed the highest SUVmax for both whole bone and cancellous bone, followed by the ilium, proximal femur, and distal femur. The bones differed significantly in SUVmax. The distal femur showed the highest HU, followed by the proximal femur, ilium, and vertebra. Profile curve analyses demonstrated that the cancellous bones showed higher SUVmax and lower HU than the cortical bones. Conclusions: Our results demonstrate the difference in NaF-18 uptake between cancellous and cortical bones, which may explain differences in uptake by location. NaF-18 uptake does not appear to be strongly correlated with bone density, but rather with bone turnover and blood flow.

Zusammenfassung

Ziel: In dieser Studie sollten mittels Positro- nen-Emissions-Tomografie (PET)/Computerto- mografie (CT) die normale Verteilung von 18F-Natriumfluorid (18F-NaF) evaluiert sowie der je nach Lokalisation und Knochentyp variable Uptake geklärt werden. Methoden: Wir prüften retrospektiv die 18F-NaF-PET/CT-Aufnahmen von 30 Patienten mit Erkrankungen des Hüftgelenks. Die PET/CT-Scans wurden 40 Minuten nach Injektion von ca. 185 MBq 18F-NaF aufgenommen. Um den Zusammenhang zwischen Verteilung des 18F-NaF-Upta- ke und Knochendichte zu beurteilen, verglichen wir bei Lendenwirbeln, Darmbein, proximalem und distalem Femur die maximalen standardisierten Aufnahmewerte (SUVmax) im PET bzw. die Hounsfield-Einheiten (HE) im CT. Bereiche von Interesse wurden sowohl außerhalb als auch innerhalb der Substantia compacta definiert, um den gesamten Knochen bzw. nur die Spongiosa zu erfassen. Ergebnisse: Die Verteilung von 18F-NaF unterschied sich je nach Skelettbereich. Die höchste SUVmax ergab sich in Lendenwirbeln, sowohl im gesamten Knochen als auch in der Spongiosa, gefolgt vom Darmbein, dem proximalen und dem distalen Femur. Die Knochen wiesen signifikante Unterschiede bei der SUVmax auf. Der distale Femur zeigte den höchsten HE-Wert, gefolgt vom proximalen Femur, dem Darmbein und den Wirbeln. Die Analyse der Profilkurven ergab für die spongiösen Anteile höhere SUVmax und niedrigere HE-Werte als für die Compacta. Schlussfolgerungen: Unsere Untersuchung ergab ein unterschiedliches 18F-NaF-Uptake für spongiöse bzw. kompakte Knochen, was die Aufnahmeunterschiede in verschiedenen Lokalisationen erklären könnte. Der 18F-NaF-Uptake scheint weniger mit der Knochendichte zu korrelieren als vielmehr mit dem Knochenumsatz und der Durchblutung.

 
  • References

  • 1 Avery R, Kuo PH. 18F sodium fluoride PET/CT detects osseous metastases from breast cancer missed on FDG PET/CT with marrow rebound. Clin Nucl Med 2013; 38: 746-748.
  • 2 Baron R. Anatomy and ultrastructure of bone. Favus MJ. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. (ed 4) Philadelphia, PA: Lippincott Williams & Wilkins; 1999: 3-10.
  • 3 Blau M, Ganatra R, Bender MA. 18F-fluoride for bone imaging. Semin Nucl Med 1972; 2: 31-37.
  • 4 Bridges RL, Wiley CR, Christian JC. et al. An introduction to Na18F bone scintigraphy: basic principles, advanced imaging concepts, and case examples. J Nucl Med Technol 2007; 35: 64-76.
  • 5 Cachovan M, Vija AH, Hornegger J. et al. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013; 3 (01) 45.
  • 6 Derlin T, Richter U, Bannas P. et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 2010; 51: 862-865.
  • 7 Derlin T, To’th Z, Papp L. et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med 2011; 52: 1020-1027.
  • 8 Domstad PA, Coupal JJ, Kim EE. et al. 99mTc-Hydroxymethane diphosphonate: a new bone imaging agent with a low tin content. Radiology 1980; 136: 209-211.
  • 9 Einhorn TA. The bone organ system: Form and function. Marcus R, Feldman D, Kelsey J. Osteoporosis.. San Diego, CA: Academic Press; 1996: 3-22.
  • 10 Francis MD, Ferguson DL, Tofe AJ. et al. Comparative evaluation of three diphosphonates: in vitro adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 1980; 21: 1185-1189.
  • 11 Gerety EL, Lawrence EM, Wason J. et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol 2015; 26: 2113-2118.
  • 12 Grant FD, Fahey FH, Packard AB. et al. Skeletal PET with 18F-Fluoride: Applying New Technology to an Old Tracer. J Nucl Med 2008; 49: 68-78.
  • 13 Iagaru A, Young P, Mittra E. et al. Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clin Nucl Med 2013; 38: e290-296.
  • 14 Krüger S, Buck AK, Mottaghy FM. et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009; 36: 1807-1812.
  • 15 Kurata S, Tateishi U, Shizukuishi K. et al. Assessment of atherosclerosis in oncologic patients using 18F-fluoride PET/CT. Ann Nucl Med 2013; 27: 481-486.
  • 16 Looker AC, Melton III LJ, Borrud LG. et al. Changes in femur neck bone density in US adults between 1988-1994 and 2005-2008: demographic patterns and possible determinants. Osteoporosis International 2012; 23: 771-780.
  • 17 Love C, Din AS, Tomas MB. et al. Radionuclide bone imaging: an illustrative review. Radiographics 2003; 23: 341-358.
  • 18 Mari C, Catafau A, Carrio I. Bone scintigraphy and metabolic disorders. Q J Nucl Med 1999; 43: 259-267.
  • 19 Minamimoto R, Loening A, Jamali M. et al. Prospective Comparison of 99mTc-MDP Scintigraphy, Combined 18F-NaF and 18F-FDG PET/CT, and Whole-Body MRI in Patients with Breast and Prostate Cancer. J Nucl Med 2015; 56: 1862-1868.
  • 20 Subramanian G, McAfee JG, Thomas FD. et al. Technetium-99m-methylene diphosphonate: a superior agent for skeletal imaging-comparison with other technetium complexes. J Nucl Med 1975; 16: 744-755.
  • 21 Suenaga H, Yokoyama M, Yamaguchi K. et al. Bone metabolism of residual ridge beneath the denture base of an RPD observed using NaF-PET/CT. J Prosthodont Res 2012; 56: 42-46.
  • 22 Tateishi U, Tateishi K, Shizukuishi K. et al. 18F-Fluoride PET/CT allows detection of hyperostosis and osseous involvement in meningioma: initial experience. Clin Nucl Med 2013; 38: e125-31.
  • 23 Win AZ, Aparici CM. Normal SUV values measured from NaF18-PET/CT bone scan studies. PLoS One 2014; 9: e108429.