Nuklearmedizin 2016; 55(01): 15-20
DOI: 10.3413/Nukmed-0753-15-07
Original article
Schattauer GmbH

Positron emission mammography in the diagnosis of breast cancer

Is maximum PEM uptake value a valuable threshold for malignant breast cancer detection?PET-Mammographie zur Diagnose von Brustkrebs Ist der maximale PEM-Uptake als Grenzwert zurErkennung von bösartigem Brustkrebs geeignet?
F. H. H. Müller
1   Radiology and Nuclear Medicine Ludwigshafen, Germany
,
J. Farahati
2   Clinic for Nuclear Medicine, Bethesda-Hospital, Duisburg, Germany
,
A. G. Müller
3   Faculty 08 Biology and Chemistry, Justus Liebig University Gießen, Germany
,
E. Gillman
2   Clinic for Nuclear Medicine, Bethesda-Hospital, Duisburg, Germany
,
M. Hentschel
4   Department of Nuclear Medicine, Inselspital Bern, Switzerland
› Author Affiliations
Further Information

Publication History

received: 01 July 2015

accepted in revised form: 30 October 2015

Publication Date:
19 December 2017 (online)

Summary

Aim: To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). Patients, methods: In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. Results: Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). Conclusion: PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.

Zusammenfassung

Ziel: Die diagnostische Leistungsfähigkeit (Sensitivität, Spezifität) des Parameters des maximalen uptakes (PUVmax) in der Positronen Emissions Mammographie (PEM) sollte zur Detektion von Brustkrebs im Rahmen einer klinischen Anwendungsbeobachtung ermittelt werden. Patienten, Methoden: In einer Anwenderstudie einer Einrichtung wurde die PEM mit der PEM Flex Solo II (Naviscan) bei 108 Patienten (107 Frauen) mit 151 malignomverdächtigen Läsionen 90 Minuten p.i. mit 3,5 MBq 18F-FDG pro kg Körpergewicht durchgeführt. In der ROI(region of interest)-basierten Analyse wurden der maximale PEM Aktivitätswert in der Läsion, Tumor (PUVmaxtumour) oder benignen Läsion (PUVmaxnormal breast) und einer korrespondierenden Region auf der gesunden Gegenseite (PUVmaxcontralateral breast) bestimmt und verglichen. Zusätzlich wurden die Verhältnisse PUVmaxtumour / PUVmaxcontralateral breast und PUVmaxnormal breast / PUVmaxcontralateral breast berechnet und verglichen. Die Bilddaten wurden von zwei erfahrenen Ärzten unabhängig befundet und bei Karzinomverdacht mit der Histopathologie verglichen. Ergebnisse: Nach dem Kriterium PUV > 1,9 wurden 31 von 151 Läsionen als bösartige Tumoren (21%) detektiert. Der Mittelwert des PUVmaxtumour wurde mit 3,78 ± 2,47 in malignen Tumoren und PUVmaxnormal breast mit 1,17 ± 0,37 im Drüsengewebe der gesunden Brust ermittelt (p < 0,001). Ebenso war der Mittelwert der Verhältnisse zwischen Tumor und gesundem Drüsengewebe bei Brustkrebspatientinnen mit 3,15 ± 1,58 signifikant höher als bei den gutartigen Läsionen 1,17 ± 0,41 (p = 0,001). Schlussfolgerung: Mit Hilfe von PEM können Brustkrebstumoren von gutartigen Tumoren mit einer sehr hohen Sensitivität (100%) bei gleichzeitig hoher Spezifität (96%) unterschieden werden, wenn als Kriterium ein Schwellwert für das PUVmax > 1.9 verwendet wird.

 
  • References

  • 1 Bartsch H-J. Taschenbuch: Mathematische Formeln. München: Fachbuchverlag Leipzig im Carl Hanser Verlag; 2001
  • 2 Berg WA, Weinberg IN, Narayanan D. et al. High-resolution fluorodeoxyglucose positron emission tomography with compression („positron emission mammography“) is highly accurate in depicting primary breast cancer. Breast J 2006; 12: 309-323.
  • 3 Caldarella C, Treglia G, Giordano A. Diagnostic performance of dedicated positron emission mammography using fluorine-18-fluorodeoxyglucose in women with suspicious breast lesions: a meta-analysis. Clin Breast Cancer 2014; 14: 241-248.
  • 4 Dobbins JT, 3rd Godfrey DJ. Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 2003; 48: R65-R106.
  • 5 Fowler AM. A molecular approach to breast imaging. J Nucl Med 2014; 55: 177-180.
  • 6 Hofstatter E W CGG, Harris L N. Section 6, Cancer of the breast, Chapter 106, Malignant Tumors of the Breast. USA: Wolters Kluwer, Lippincott Williams & Wilkins; 2011
  • 7 Hruska CB, O’Connor MK. Nuclear imaging of the breast: translating achievements in instrumentation into clinical use. Med Phys 2013; 40: 050901.
  • 8 Imdahl A, Hentschel M, Kleimaier M. et al. Impact of FDG-PET for staging of oesophageal cancer. Langenbeck’s Arch Surg 2004; 389: 283-288.
  • 9 ICRP. Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP 2008; 38: 1-2.
  • 10 Kalinyak JE, Berg WA, Schilling K. et al. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 2014; 41: 260-275.
  • 11 Lu X, Luo W, Kalinyak J. Radiation dose reduction for personalized breast PET imaging. J Nucl Med 2010; 51 (2_MeetingAbstracts) 358.
  • 12 Luo W, Anashkin E, Matthews CG. Performance evaluation of a PEM scanner using the NEMA NU 4-2008 small animal PET standards. IEEE Trans Nucl Sci 2010; 57: 94-103.
  • 13 MacDonald L, Edwards J, Lewellen T. et al. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 2009; 50: 1666-1675.
  • 14 Macdonald LR, Wang CL, Eissa M. et al. Positron emission mammography (PEM): effect of activity concentration, object size, and object contrast on phantom lesion detection. Med Phys 2012; 39: 6499-6508.
  • 15 Moliner L, González AJ, Soriano A. et al. Design and evaluation of the MAMMI dedicated breast PET. Med Phys 2012; 39: 5393-5404.
  • 16 Moon EH, Lim ST, Han YH. et al. The usefulness of F-18 FDG PET/CT-mammography for preoperative staging of breast cancer: comparison with conventional PET/CT and MR-mammography. Radiol Oncol 2013; 47: 390-397.
  • 17 Murthy K, Aznar M, Thompson CJ. et al. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med 2000; 41: 1851-1858.
  • 18 Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009; 54: R1-R25.
  • 19 Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Transact Medical Imaging 2006; 25: 907-921.
  • 20 Schilling K, Narayanan D, Kalinyak JE. et al. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2011; 38: 23-36.
  • 21 Sippo DA, Warden GI, Andriole KP. et al. Automated extraction of BI-RADS final assessment categories from radiology reports with natural language processing. J Digit Imaging 2013; 26: 989-994.
  • 22 Weigel S, Berkemeyer S, Girnus R. et al. Digital mammography screening with photon-counting technique: can a high diagnostic performance be realized at low mean glandular dose?. Radiology 2014; 271: 345-355.
  • 23 Welch HG, Passow HJ. Quantifying the benefits and harms of screening mammography. JAMA 2014; 174: 448-454.
  • 24 Yamamoto Y, Tasaki Y, Kuwada Y. et al. Positron emission mammography (PEM): reviewing standardized semiquantitative method. Ann Nucl Med 2013; 27: 795-801.
  • 25 Zentrum für Krebsregisterdaten. www.krebsdaten.de/Krebs/SiteGlobals/Forms/Datenbankabfrage/datenbankabfrage_stufe2_form.html
  • 26 Zhang J, Olcott PD, Chinn G. et al. Study of the performance of a novel 1 mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation. Med Phys 2007; 34: 689-702.