Subscribe to RSS
DOI: 10.3413/Nukmed-0617-13-08
99mTc tetrofosmin myocardial perfusion scintigraphy in CAD
Performance with early and standard delayed acquisition and fractional flow reserve99mTc-Tetrofosmin-Myokardperfusions szintigraphie bei koronarer HerzerkrankungAusführung mit Früh und Spätaufnahmen und fraktionaler Fluss reservePublication History
received:
09 August 2013
accepted in revised form:
02 October 2013
Publication Date:
02 January 2018 (online)
Summary
Aim: Early stress imaging (15 min after injection of the radiopharmaceutical) in 99mTc tetrofosmin myocardial perfusion scintigraphy (MPS) has been shown feasible in comparison to standard imaging after 45 minutes, but the effects on image quality and diagnostic accuracy ask for further evaluation. Patients, methods: 97 patients (61 men, 36 women, age 69 ± 11 years) underwent both early (EA) and standard (SA) acquisition (after 14 ± 4 min and 43 ± 6 min, respectively) using 99mTc tetrofosmin gated SPECT with iterative reconstruction. sub- diaphragmatic tracer activity and image quality was scored in a 4-point scale by blinded observers. Semiquantitative myo- cardial perfusion analysis was performed on a 17-segment model using standard cardiac quantification SPECT software (4 DM- SPECT). Stenoses of indeterminate haemody- namic significance were validated by measurement of fractional flow reserve (FFR). Results: Extra-cardiac tracer activity was more commonly found in EA (43%) than in SA (38%), but without any diagnostic impact in > 95% of the patients. The mean summed stress score was significantly higher for early than standard imaging (6.4 ± 6.3 vs.5.6 ± 6.1, p = 0.009). The amount of ischaemic area was not significantly different (EA: 9.1 ±6.7 % vs. SA: 7.8 ± 6.9 %). The mean stress ejection fraction was 52 ± 11% (EA) compared to 55 ± 11 % (SA) (p = ns). FFR was inversely related to SDS at early (r = -0.704, p < 0.05) and standard (r=-0.678, p < 0.05) acquisition. All patients with a FFR < 0.8 (considered as hemodynamically significant stenoses) revealed a positive scan. Conclusion: Stress 99mTc tetrofosmin MPS with early acquisition is feasible and at least equally accurate when iterative reconstruction is applied.
Zusammenfassung
Hintergrund: Die Machbarkeit und Untersuchungsqualität der frühzeitigen Bildaquisition (15 Minuten nach Injektion des Radiopharma- kons) wird bei der Myokardszintigrafie (MS) mit 99mTc-Tetrofosmin im Vergleich zu der konventionellen Bildakquisition nach 45 Minuten kontrovers beurteilt. Patienten, Methode: 97 Patienten (61 Männer, 36 Frauen; Alter 69 ± 11 Jahre) unterzogen sich der 99mTc-Te- trofosmin-MS nach pharmakologischer Belastung mit Adenosin (konventionelle Doppelkopfkamera, gated SPECT-Technik, iterative Rekonstruktion) mit Früh- (FA) und Standardaufnahmen (SA) nach 14 ± 4 min bzw. 43 ± 6 min. subdiaphragmatische Akkumulation des Radiopharmakons, Bildqualität und Myokardperfusion (17-Segment-Modell, 4 DM-SPECT Software) wurden semiquantitativ beurteilt. Die Validierung erfolgte bei Stenosen unklarer Signifikanz durch die Bestimmung der fraktionalen Flussreserve (FFR). Ergebnisse: Extrakardiale Artefakte wurden häufiger bei FA (43%) als bei SA (38%) erfasst, waren jedoch in > 95% der Patienten ohne Auswirkungen auf die Beurteilbarkeit. Der mittlere Stress Score war bei FA signifikant höher als bei SA (6,4 ± 6,3 vs. 5,6 ± 6,1, p = 0,009), während das mittlere Ischämieausmaß nicht unterschiedlich war (9,1 ± 6,7 vs. 7,8 ± 6,9%). Die Post-Stress-Auswurffrak- tion war bei FA (52 ± 11%) und SA (55 ± 11%) nicht unterschiedlich. Die FFR korrelierte negativ mit dem Ischämie Score bei FA (r = −0,704, p < 0,05) und SA (r = −0,678, p < 0,05). In allen Patienten mit einer FFR < 0,8 (Schwellenwert für die hämodynamische Wirksamkeit einer Stenose) konnte ein Ischämienachweis erbracht werden. Schlussfolgerung: Die 99mTc-Tetrofosmin-Stress-MS mit früher Bildakquisition ist unter Verwendung eines iterativen Rekonstruktionsalgorhyth- mus machbar und besitzt eine zumindest gleichwertige diagnostische Aussagekraft.
-
References
- 1 Albutaihi I, van der Veen L, Scholte A, Stokkel MP. The effects of early and late scanning on image quality and functional parameters in myocardial perfusion imaging. Clin Nucl Med 2010; 35: 764-769.
- 2 Berman DS, Kang X, Van Train KF. et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion SPECT. J Am Coll Cardiol 1998; 32: 1987-1995.
- 3 Brown KA, Heller GV, Landin RS. et al. Early di-pyridamole 99mTc-sestamibi single photon emission computed tomographic imaging 2 to 4 days after acute myocardial infarction predicts inhospital and postdischarge cardiac events: comparison with submaximal exercise imaging. Circulation 1999; 100: 2060-2066.
- 4 Chamuleau SA, Meuwissen M, Koch KT. et al. Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate stenosis. Am J Cardiol 2002; 89: 377-380.
- 5 Chamuleau SA, Meuwissen M, van Eck-Smit BL. et al. Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestamibi singlephoton emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol 2001; 37: 1316-22.
- 6 Chamuleau SA, van Eck-Smit BL, Meuwissen M. et al. Long-term prognostic value of CFVR and FFR versus perfusion scintigraphy in patients with multivessel disease. Neth Heart J 2007; 15: 369-374.
- 7 Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am J Cardiol 2007; 99: 450-456.
- 8 Clark AN, Beller GA. The present role of nuclear cardiology in clinical practice. Q J Nucl Med Mol Imaging 2005; 49: 43-58.
- 9 De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995; 92: 39-46.
- 10 Elhendy A, Schinkel AF, van Domburg RT. et al. Prognostic value of stress 99mTc-tetrofosmin myocardial perfusion imaging in predicting all-cause mortality: a 6-year follow-up study. Eur J Nucl Med Mol Imaging 2006; 33: 1157-1161.
- 11 Flamen P, Bossuyt A, Franken PR. Technetium-99m-tetrofosmin in dipyridamole-stress myocardial SPECT imaging: intraindividual comparison with technetium-99m-sestamibi. J Nucl Med 1995; 36: 2009-2015.
- 12 Forster S, Rieber J, Ubleis C. et al. Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve. Int J Cardiovasc Imaging 2010; 26: 203-213.
- 13 Giorgetti A, Kusch A, Casagranda M. et al. Myocardial imaging with 99mTc-Tetrofosmin: Influence of post-stress acquisition time, regional radiotracer uptake, and wall motion abnormalities on the clinical result. J Nucl Cardiol 2010; 17: 276-285.
- 14 Giorgetti A, Rossi M, Stanislao M. et al. Feasibility and diagnostic accuracy of a gated SPECT early-imaging protocol: a multicenter study of the Myoview Imaging Optimization Group. J Nucl Med 2007; 48: 1670-1675.
- 15 Hachamovitch R, Berman DS, Kiat H. et al. Incremental prognostic value of adenosine stress myocardial perfusion single-photon emission computed tomography and impact on subsequent management in patients with or suspected of having myocardial ischemia. Am J Cardiol 1997; 80: 426-433.
- 16 Hambye AS, Delsarte P, Vervaet AM. Influence of the different biokinetics of sestamibi and tetrofosmin on the interpretation of myocardial perfusion imaging in daily practice. Nucl Med Commun 2007; 28: 383-390.
- 17 Lindner O, Burchert W, Hacker M. et al. Myokard-Perfusions-Szintigraphie. Kurzfassung der S1-Leitlinie. Nuklearmedizin 2013; 52: 51-63.
- 18 Lyngholm AM, Pedersen BH, Petersen LJ. Randomized, single-blind, factorial design study of the interaction of food and time on intestinal activity in ““Tc-tetrofosmin stress myocardial perfusion scintigraphy. Nucl Med Commun 2008; 29: 759-763.
- 19 Munch G, Neverve J, Matsunari I. et al. Myocardial technetium-99m-tetrofosmin and technetium-99m-sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med 1997; 38: 428-432.
- 20 Peace RA, Lloyd JJ. The effect of imaging time, radiopharmaceutical, full fat milk and water on interfering extra-cardiac activity in myocardial perfusion single photon emission computed tomography. Nucl Med Commun 2005; 26: 17-24.
- 21 Pennell DJ, Mavrogeni SI, Forbat SM. et al. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 1995; 25: 1300-1309.
- 22 Philippe L, Merino B, Blaire T. et al. Tetrofosmin early time gated post-stress single-photon emission computed tomography imaging: feasibility and potential benefits. J Nucl Cardiol 2011; 18: 62-72.
- 23 Shaw LJ, Berman DS, Maron DJ. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008; 117: 1283-1291.
- 24 Tonino PA, De Bruyne B, Pijls NH. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360: 213-224.
- 25 Vanzetto G, Ormezzano O, Fagret D. et al. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients : study in 1137 patients with 6-year follow-up. Circulation 1999; 100: 1521-1527.