Nuklearmedizin 2013; 52(05): 192-197
DOI: 10.3413/Nukmed-0543-12-11
Original article
Schattauer GmbH

Bone marrow mesenchymal stem cell transplantation in acute brain trauma

Improvement of brain glucose metabolism in a rat modelKnochenmarktransplantation mit mesenchymalen Stammzellen bei akutem HirntraumaVerbesserung des zerebralen Glukosestoffwechsels in einem Rattenmodell
B.-N. Park
1   Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Korea
,
J.-K. Yoon
1   Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Korea
,
Y.-S. An
1   Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Korea
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. November 2012

accepted in revised form: 06. Mai 2013

Publikationsdatum:
12. Januar 2018 (online)

Summary

Aim: This study was performed to evaluate the effects of intravenously transplanted rat bone-marrow derived mesenchymal stem cells (rBMSCs) in an acute brain trauma model using serial 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in rat models. Animals, methods: Trauma models were made using a controlled cortical impact injury device. The stem cell treatment group was treated with intravenous injections of BMSCs, and models without stem cell therapy comprised the control group. Serial 18F-FDG PET images were obtained 1, 7, 14, 21, and 28 days after trauma. The difference in 18F-FDG uptake between day 1 and each time point after trauma was analyzed with SPM2 (uncorrected p < 0.005). Results: The stem cell treatment group demonstrated significantly higher 18F-FDG uptake in the right parietal region at 14 days after trauma than at 1 day after trauma. An increase in glucose metabolism in the right parietal cortex appeared on days 21 and 28 after trauma in the group without stem cell treatment. The 18F-FDG uptake in the brain was improved over a broader area, including the right parietal and right primary somatosensory cortex, on days 21 and 28 after trauma in the stem cell treatment group compared with the group without stem cell treatment. Conclusion: BMSC therapy in trauma models led to improved glucose metabolism. This result might support the therapeutic effect of stem cells in brain trauma.

Zusammenfassung

Ziel: In dieser Studie sollten mittels serieller 18F-Fluordeoxyglukose(18F-FDG)-Positronenemissionstomographie (PET) die Wirkungen von intravenös transplantierten, aus RattenKnochenmark gewonnenen mesenchymalen Stammzellen (rBMSC) auf das experimentelle akute Hirntrauma im Rattenmodell untersucht werden. Tiere, Methoden: Die Traumamodelle wurden mit Hilfe einer Vorrichtung für experimentelle Schädel-Hirn-Traumata (CCI) erzeugt. Die Stammzell-Gruppe wurde mit intravenösen Injektionen von BMSC behandelt, Tiere ohne Stammzelltherapie bildeten die Kontrollgruppe. An den Tagen 1, 7, 14, 21 und 28 nach dem Trauma wurden serielle 18F-FDG-PET-Aufnahmen gemacht. Die Unterschiede in der 18F-FDG-Aufnahme zwischen Tag 1 und jedem Zeitpunkt nach dem Trauma wurden mittels SPM2 (unkorrigierter p-Wert < 0,005) analysiert. Ergebnisse: In der Stammzell-Gruppe fanden wir 14 Tage nach dem Trauma in der rechts parietalen Region eine signifikant stärkere 18F-FDG-Aufnahme als an Tag 1 nach dem Trauma. In der Gruppe ohne Stammzellbehandlung trat an den Tagen 21 und 28 nach Trauma eine Zunahme des Glukosestoffwechsels im rechts parietalen Kortex auf. Die zerebrale 18F-FDG-Aufnahme verbesserte sich an den Tagen 21 und 28 nach dem Trauma in der Stammzell-Gruppe in einem größeren Areal als in der Gruppe ohne Stammzellbehandlung, einschließlich des rechts parietalen und des rechten primären somato-sensorischen Cortex. Schlussfolgerung: Die BMSC-Behandlung in Traumamodellen führte zu einem verbesserten Glukosestoffwechsel. Dieses Ergebnis könnte den therapeutischen Einsatz von Stammzellen bei Hirntrauma stützen.

 
  • References

  • 1 Bi LX, Simmons DJ, Mainous E. Expression of BMP-2 by rat bone marrow stromal cells in culture. Calcif Tissue Int 1999; 64: 63-68.
  • 2 Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007; 38: 817-826.
  • 3 Casteels C, Vermaelen P, Nuyts J. et al. Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 2006; 47: 1858-1866.
  • 4 Chen X, Katakowski M, Li Y. et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 2002; 69: 687-691.
  • 5 Coumans JV, Lin TT, Dai HN. et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 2001; 21: 9334-9344.
  • 6 Deng J, Zou ZM, Zhou TL. et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol Sci 2011; 32: 641-651.
  • 7 Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 1999; 73: 1409-1421.
  • 8 Erceg S, Ronaghi M, Stojkovic M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27: 78-87.
  • 9 Harting MT, Jimenez F, Xue H. et al. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009; 110: 1189-1197.
  • 10 Heile AM, Wallrapp C, Klinge PM. et al. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 2009; 463: 176-181.
  • 11 Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant 2007; 16: 133-150.
  • 12 Hyder AA, Wunderlich CA, Puvanachandra P. et al. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007; 22: 341-353.
  • 13 Kornblum HI. Introduction to neural stem cells. Stroke 2007; 38: 810-816.
  • 14 Li JY, Christophersen NS, Hall V. et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008; 31: 146-153.
  • 15 Lingsma HF, Roozenbeek B, Steyerberg EW. et al. Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol 2010; 9: 543-554.
  • 16 Longhi L, Zanier ER, Royo N. et al. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 2005; 15: 143-148.
  • 17 Lu D, Mahmood A, Wang L. et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001; 12: 559-563.
  • 18 Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004; 21: 33-39.
  • 19 Mahmood A, Lu D, Qu C. et al. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 2005; 57: 1026-1031.
  • 20 Mahmood A, Lu D, Wang L. et al. Treatment of traumatic brain injury in female rats with intra- venous administration of bone marrow stromal cells. Neurosurgery 2001; 49: 1196-1203.
  • 21 Nie B, Chen K, Zhao S. et al. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis. Hum Brain Mapp 2013; 34: 1306-1318.
  • 22 Ohtaki H, Ylostalo JH, Foraker JE. et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/ immune responses. Proc Natl Acad Sci USA 2008; 105: 14638-14643.
  • 23 Park BN, Shim W, Lee G. et al. Early distribution of intravenously injected mesenchymal stem cells in rats with acute brain trauma evaluated by 99mTc- HMPAO labeling. Nucl Med Biol 2011; 38: 1175-1182.
  • 24 Park HJ, Lee PH, Bang OY. et al. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 2008; 107: 141-151.
  • 25 Pierchala BA, Ahrens RC, Paden AJ, Johnson Jr EM. Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J Biol Chem 2004; 279: 27986-27993.
  • 26 Pittenger MF, Mackay AM, Beck SC. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
  • 27 Roshal LM, Tzyb AF, Pavlova LN. et al. Effect of cell therapy on recovery of cognitive functions in rats during the delayed period after brain injury. Bull Exp Biol Med 2009; 148: 140-147.
  • 28 Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585-596.
  • 29 Sarnowska A, Braun H, Sauerzweig S, Reymann KG. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol 2009; 215: 317-327.
  • 30 Swanson RA, Morton MT, Tsao-Wu G. et al. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990; 10: 290-293.
  • 31 Tolias CM, Bullock MR. Critical appraisal of neuro protection trials in head injury: what have we learned?. NeuroRx 2004; 1: 71-79.
  • 32 Tsyb AF, Roshal LM, Konoplyannikov AG. et al. Evaluation of psychoemotional status of rats after brain injury and systemic transplantation of mesenchymal stem cells. Bull Exp Biol Med 2007; 143: 539-542.
  • 33 Tsyb AF, Roshal LM, Yuzhakov VV. et al. Morphofunctional study of the therapeutic effect of autologous mesenchymal stem cells in experimental diffuse brain injury in rats. Bull Exp Biol Med 2006; 142: 140-147.
  • 34 Yoon JK, Park BN, Shim WY. et al. In vivo tracking of 111In-labeled bone marrow mesenchymal stem cells in acute brain trauma model. Nucl Med Biol 2010; 37: 381-388.