CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(07): 403-411
DOI: 10.1590/0004-282X20200020
Article

Clinical characteristics of children with congenital Zika syndrome: a case series

Características clínicas de crianças com síndrome do zika congênita: uma série de casos
1   Universidade de São Paulo, Programa de Pós-Graduação em Ciências da Reabilitação, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Saúde Pública, Programa de Pós-Graduação em Epidemiologia, São Paulo SP, Brazil.
,
3   Centro de Reabilitação Mens Sana, Arcoverde PE, Brazil.
,
4   Universidade Federal de São Paulo, Escola Paulista de Medicina, Programa de Pós-Graduação em Cardiologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Saúde Pública, Programa de Pós-Graduação em Epidemiologia, São Paulo SP, Brazil.
,
5   Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo, São Paulo SP, Brazil.
,
6   University of Exeter, Paediatric Neuropsychology, United Kingdom of Great Britain and Northern Ireland.
,
7   Faculdade de Medicina do ABC, Santo André SP, Brazil.
,
8   The Cambridge Centre for Paediatric Neurorehabilitation, Cambridge, United Kingdom.
,
1   Universidade de São Paulo, Programa de Pós-Graduação em Ciências da Reabilitação, São Paulo SP, Brazil.
,
9   Pontifícia Universidade Católica de São Paulo, Curso de Fisioterapia, Departamento Teorias e Métodos em Fisioterapia e Fonoaudiologia, São Paulo SP, Brazil.
› Author Affiliations

ABSTRACT

Background: The congenital Zika syndrome involves structural brain changes, including ventriculomegaly, thin cerebral cortices, abnormal gyral pattern, cortical malformations, hypoplasia of the corpus callosum, myelination delay, subcortical diffuse calcifications, brainstem hypoplasia, and microcephaly in newborns. Objective: This study aimed to describe the clinical characteristics of children with congenital Zika syndrome; to compare the outcomes of infants infected in the first (1T, n=20) and second trimesters of pregnancy (2T, n=11); to investigate correlations between birth weight, birth and follow-up head circumference, birth gestational age, and gross motor scores. Methods: Participants were evaluated with Alberta Infant Motor Scale (AIMS) and part A of the Gross Motor Function Measure (GMFM-A). ANOVA compared head circumference, birth gestational age, birth weight, and gross motor performance of 1T and 2T. Results: The correlations were investigated by Pearson correlation coefficients. ANOVA showed differences in birth and follow-up head circumferences. Head circumference was smaller in 1T, compared to 2T. Motor performance was classified as below the fifth percentile in AIMS in all children and 1T showed lower scores in prone, sitting, and total AIMS score, compared to 2T. Children ranged from 8 to 78% on GMFM-A and there was a poorer motor performance of 1T. Nineteen children showed hypertonia, six showed normal tone and six showed hypotonia. Birth head circumference was correlated with AIMS prone postural control. Follow-up head circumference was correlated to prone, supine and total AIMS scores. Smaller head circumference at birth and follow-up denoted poorer postural control. Discussion: Children with congenital Zika syndrome showed microcephaly at birth and follow-up. Smaller head circumferences and poorer motor outcomes were observed in 1T. Infants showed poor visual and motor outcomes. Moderate positive correlations between birth and follow-up head circumference and gross motor function were found.

RESUMO

Introdução: A síndrome congênita do zika envolve alterações estruturais do cérebro, incluindo ventriculomegalia, córtices finos do cérebro, padrão giral anormal, malformações corticais, hipoplasia do corpo caloso, atraso de mielinização, calcificações difusas subcorticais, hipoplasia do tronco cerebral e microcefalia em recém-nascidos. Objetivo: Este estudo teve como objetivo descrever as características clínicas de crianças com síndrome congênita do zika; comparar os resultados de bebês infectados no primeiro (1T, n=20) e no segundo trimestres da gravidez (2T, n=11); investigar correlações entre peso ao nascer, perímetro cefálico ao nascer e acompanhamento, idade gestacional ao nascer e escores motores brutos. Método: Os participantes foram avaliados com a Escala Motora Infantil de Alberta (Alberta Infant Motor Scale - AIMS) e a parte A da Medida da Função Motora Grossa (Gross Motor Function Measure - GMFM-A). A ANOVA comparou a circunferência da cabeça, a idade gestacional ao nascer, o peso ao nascer e o desempenho motor bruto de 1T e 2T. As correlações foram investigadas pelos coeficientes de correlação de Pearson. A ANOVA mostrou diferenças no perímetro cefálico ao nascimento e acompanhamento. A circunferência da cabeça foi menor no 1T, em comparação ao 2T. Resultados: O desempenho motor foi classificado como abaixo do quinto percentil na AIMS para todas as crianças e o 1T apresentou escores mais baixos na posição de bruços, sentado e no escore total da AIMS, em comparação ao 2T. As crianças variaram de 8 a 78% no GMFM-A e houve um desempenho motor pior de 1T. Dezenove crianças apresentaram hipertonia, seis apresentaram tônus normal e seis apresentaram hipotonia. A circunferência da cabeça no nascimento foi correlacionada com o controle postural em posição de bruços à AIMS. Discussão: O perímetro cefálico de acompanhamento foi correlacionado aos escores AIMS em posição de bruços, em supino e no escore total. Menor perímetro cefálico ao nascimento e acompanhamento indicaram pior controle postural. Crianças com síndrome congênita do zika apresentaram microcefalia ao nascimento e acompanhamento. Circunferências da cabeça menores e piores resultados motores foram observados no 1T. Os bebês apresentaram maus resultados visuais e motores. Foram encontradas correlações moderadas positivas entre o nascimento e a circunferência da cabeça de acompanhamento, e a função motora grossa.

Support:

Conselho Nacional de Desenvolvimento Científico e Tecnológico, number: 8887.091039/2014-01 for the support of fellows of the group.




Publication History

Received: 17 December 2019

Accepted: 13 February 2020

Article published online:
13 June 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Chan JF, Choi GK, Yip CC, Cheng VC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect. 2016 May;72(5):507-24. https://doi.org/10.1016/j.jinf.2016.02.011
  • 2 Costa F, Sarno M, Khouri R, de Paula Freitas B, Siqueira I, et al. Emergence of congenital Zika syndrome: viewpoint from the front lines. Ann Intern Med. 2016 May 17;164(10):689-91. https://doi.org/10.7326/M16-0332
  • 3 Halai UA, Nielsen-Saines K, Moreira ME, de Sequeira PC, Junior JPP, de Araujo Zin A, et al. Maternal Zika virus disease severity, virus load, prior dengue antibodies and their relationship to birth outcomes. Clin Infect Dis. 2017 Sep;65(6):877-83. https://doi.org/10.1093/cid/cix472
  • 4 Duarte G, Moron AF, Timerman A, Fernandes CE, Mariani Neto C, de Almeida Filho GL, et al. Zika virus infection in pregnant women and microcephaly. Rev Bras Ginecol Obstet. 2017 May;39(5):235-48. https://doi.org/10.1055/s-0037-1603450
  • 5 Brasil P, Pereira Junior JP, Moreira ME, Nogueira RMR, Damasceno L, Wakimoto M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016 Dec;375(24):2321-34. https://doi.org/10.1056/NEJMoa1602412
  • 6 Oliveira WK, Cortez-Escalante J, De Oliveira WTGH, Carmo GMI, Henriques CMP, Coelho GE, et al. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed zika virus transmission during the first trimester of pregnancy - Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(9):242-7. http://dx.doi.org/10.15585/mmwr.mm6509e2
  • 7 Carvalho A, Brites C, Mochida G, Ventura P, Fernandes A, Lage ML, et al. Clinical and neurodevelopmental features in children with cerebral palsy and probable Congenital Zika. Brain Dev. 2019 Aug;41(7):587-94. http://dx.doi.org/10.1016/j.braindev.2019.03.005
  • 8 Zare Mehrjardi M, Keshavarz E, Poretti A, Hazin AN. Neuroimaging findings of Zika virus infection: a review article. Jpn J Radiol. 2016 Dec;34(12):765-70. https://doi.org/10.1007/s11604-016-0588-5
  • 9 van der Linden V, Pessoa A, Dobyns W, Barkovich AJ, Júnior HV, Filho EL, et al. Description of 13 infants born during October 2015-January 2016 with congenital Zika virus infection Without microcephaly at birth - Brazil. MMWR Morb Mortal Wkly Rep. 2016 Dec;65(47):1343-8. https://doi.org/10.15585/mmwr.mm6547e2
  • 10 Zare Mehrjardi M, Poretti A, Huisman TA, Werner H, Keshavarz E, Araujo Júnior E. Neuroimaging findings of congenital Zika virus infection: a pictorial essay. Jpn J Radiol. 2017 Mar;35(3):89-94. https://doi.org/10.1007/s11604-016-0609-4
  • 11 Morris G, Barichello T, Stubbs B, Kohler CA, Carvalho AF, Maes M. Zika Virus as an emerging neuropathogen: mechanisms of neurovirulence and neuro-immune interactions. Mol Neurobiol. 2018 May;55(5):4160-84. https://doi.org/10.1007/s12035-017-0635-y
  • 12 Cabral CM, Nobrega M, Leite PLE, Souza MSF, Teixeira DCP, Cavalcante TF, et al. Clinical-epidemiological description of live births with microcephaly in the state of Sergipe, Brazil, 2015. Epidemiol Serv Saúde. 2017 Apr/Jun;26(2):245-54. https://doi.org/10.5123/s1679-49742017000200002
  • 13 Rather IA, Lone JB, Bajpai VK, Park YH. Zika virus infection during pregnancy and congenital abnormalities. Front Microbiol. 2017 Apr;8:581. https://doi.org/10.3389/fmicb.2017.00581
  • 14 França GVA, Schuler-Faccini L, Oliveira WK, Henriques CMP, Carmo EH, Pedi VD, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet. 2016 Aug;388(10047):891-7. https://doi.org/10.1016/S0140-6736(16)30902-3
  • 15 Cordeiro MT, Brito CA, Pena LJ, Castanha PM, Gil LH, Lopes KG, et al. Results of a Zika Virus (ZIKV) Immunoglobulin M-Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing Anti-ZIKV Antibodies in Neonates With Congenital Disease. J Infect Dis. 2016 Dec;214(12):1897-904. https://doi.org/10.1093/infdis/jiw477
  • 16 Marques FJP, Teixeira MCS, Barra RR, Lima FM, Dias BLS, Pupe C, et al. Children born with congenital Zika syndrome display atypical gross motor development and a higher risk for cerebral palsy. J Child Neurol. 2019;34(2):81-85. https://doi.org/10.1177/0883073818811234
  • 17 Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2017 Mar;171(3):288-95. https://doi.org/10.1001/jamapediatrics.2016.3982
  • 18 de Albuquerque PL, Lemos A, Guerra MQ, Eickmann SH. Accuracy of the Alberta Infant Motor Scale (AIMS) to detect developmental delay of gross motor skills in preterm infants: a systematic review. Dev Neurorehabil. 2015 Feb;18(1):15-21. https://doi.org/10.3109/17518423.2014.955213
  • 19 Syrengelas D, Kalampoki V, Kleisiouni P, Manta V, Mellos S, Pons R, et al. Alberta Infant Motor Scale (AIMS) performance of greek preterm infants: comparisons with full-term infants of the same nationality and impact of prematurity-related morbidity factors. Phys Ther. 2016 Jul;96(7):1102-8. https://doi.org/10.2522/ptj.20140494
  • 20 Darrah J, Piper M, Watt MJ. Assessment of gross motor skills of at-risk infants: predictive validity of the Alberta Infant Motor Scale. Dev Med Child Neurol. 1998 Jul;40(7):485-91. https://doi.org/10.1111/j.1469-8749.1998.tb15399.x
  • 21 Valentini NC, Saccani R. Brazilian validation of the Alberta Infant Motor Scale. Phys Ther. 2012 Mar;92(3):440-7. https://doi.org/10.2522/ptj.20110036
  • 22 Darrah J, Bartlett D, Maguire TO, Avison WR, Lacaze-Masmonteil T. Have infant gross motor abilities changed in 20 years? A re-evaluation of the Alberta Infant Motor Scale normative values. Dev Med Child Neurol. 2014 Sep;56(9):877-81. https://doi.org/10.1111/dmcn.12452
  • 23 Al-Nemr A, Abdelazeim F. Relationship of cognitive functions and gross motor abilities in children with spastic diplegic cerebral palsy. Appl Neuropsychol Child. 2018 Jul-Sep;7(3):268-76. https://doi.org/10.1080/21622965.2017.1312402
  • 24 Salavati M, Rameckers EA, Waninge A, Krijnen WP, Steenbergen B, van der Schans CP. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment: A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI). Res Dev Disabil. 2017 Jan;60:269-76. https://doi.org/10.1016/j.ridd.2016.10.007
  • 25 White-Traut RC, Nelson MN, Silvestri JM, Vasan U, Patel M, Cardenas L. Feeding readiness behaviors and feeding efficiency in response to ATVV intervention. Newborn Infant Nurs Rev. 2002 Sep;2(3):166-73. https://doi.org/10.1053/nbin.2002.35121
  • 26 Medoff-Cooper B, Rankin K, Li Z, Liu L, White-Traut R. Multisensory intervention for preterm infants improves sucking organization. Adv Neonatal Care. 2015 Apr;15(2):142-9. https://doi.org/10.1097/ANC.20200020202000200166
  • 27 Lima GP, Rozembaum D, Pimentel C, Frota ACC, Vivacqua D, Machado ES, et al. Factors associated with the development of congenital Zika syndrome: a case control study. BMC Infect Dis. 2019 Mar 22;19(1):277. https://doi.org/10.1186/s12879-019-3908-4
  • 28 Tellechea AL, Luppo V, Morales MA, Groisman B, Baricalla A, Fabbri C, et al. Surveillance of microcephaly and selected brain anomalies in Argentina: relationship with Zika virus and other congenital infections. Birth Defects Res. 2018 Jul;110(12):1016-26. https://doi.org/10.1002/bdr2.1347
  • 29 Ventura CV, Maia M, Ventura BV, van der Linden, Araújo EB, Ramos RC, et al. Ophthalmological findings in infants with microcephaly and presumable intra-uterus Zika virus infection. Arq Bras Oftalmol. 2016;79(1):1-3. https://doi.org/10.5935/0004-2749.20160002
  • 30 Alves LV, Paredes CE, Silva GC, Mello JG, Alves JG. Neurodevelopment of 24 children born in Brazil with congenital Zika syndrome in 2015: a case series study. BMJ Open. 2018 Jul;8(7):e021304. https://doi.org/10.1136/bmjopen-2017-021304
  • 31 Spittle AJ, Doyle LW, Boyd RN. A systematic review of the clinimetric properties of neuromotor assessments for preterm infants during the first year of life. Dev Med Child Neurol. 2008 Apr;50(4):254-66. https://doi.org/10.1111/j.1469-8749.2008.02025.x
  • 32 Foulder-Hughes LA, Cooke RW. Motor, cognitive, and behavioural disorders in children born very preterm. Dev Med Child Neurol. 2003 Feb;45(2):97-103.