CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2018; 76(04): 265-272
DOI: 10.1590/0004-282X20180011
View and Review

Therapeutic advances in 5q-linked spinal muscular atrophy

Avanços terapêuticos na atrofia muscular espinhal ligada ao cromossomo 5q
Umbertina Conti Reed
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
,
Edmar Zanoteli
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
› Author Affiliations

ABSTRACT

Spinal muscular atrophy (SMA) is a severe and clinically-heterogeneous motor neuron disease caused, in most cases, by a homozygous mutation in the SMN1 gene. Regarding the age of onset and motor involvement, at least four distinct clinical phenotypes have been recognized. This clinical variability is, in part, related to the SMN2 copy number. By now, only supportive therapies have been available. However, promising specific therapies are currently being developed based on different mechanisms to increase the level of SMN protein; in particular, intrathecal antisense oligonucleotides that prevent the skipping of exon 7 during SMN2 transcription, and intravenous SMN1 insertion using viral vector. These therapeutic perspectives open a new era in the natural history of the disease. In this review, we intend to discuss the most recent and promising therapeutic strategies, with special consideration to the pathogenesis of the disease and the mechanisms of action of such therapies.

RESUMO

A atrofia muscular espinhal (AME) é uma grave doença dos neurçnios motores, de grande variabilidade clínica e causada na maioria dos casos por mutação em homozigose no gene SMN1. Pelo menos quatro fenótipos clínicos distintos são reconhecidos com base na idade de início e no grau de envolvimento motor. Tal variabilidade clínica é em parte relacionada com o número de cópias do gene SMN2. Até recentemente, apenas terapias de suporte estavam disponíveis. Atualmente, terapias especificas estão sendo desenvolvidas com base em diferentes mecanismos para aumentar o nível de proteína SMN; em particular oligonucleotídeos antissenso por via intratecal e inserção de cópia do gene SMN1, via endovenosa, usando vetor viral. Nesta revisão, objetivamos discutir as mais recentes e promissoras estratégias terapêuticas, com consideração especial aos aspectos patogênicos da doença e aos mecanismos de ação de tais terapias.



Publication History

Received: 19 September 2017

Accepted: 15 December 2017

Article published online:
28 August 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995 Jan;80(1):155-65. https://doi.org/10.1016/0092-8674(95)90460-3
  • 2 Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012 Jan;20(1):27-32. https://doi.org/10.1038/ejhg.2011.134
  • 3 Verhaart IE, Robertson A, Leary R, McMacken G, König K, Kirschner J et al. A multi-source approach to determine SMA incidence and research ready population. J Neurol. 2017 Jul;264(7):1465-73. https://doi.org/10.1007/s00415-017-8549-1
  • 4 Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord. 1992;2(5-6):423-8. https://doi.org/10.1016/S0960-8966(06)80015-5
  • 5 Grotto S, Cuisset JM, Marret S, Drunat S, Faure P, Audebert-Bellanger S et al. Type 0 Spinal Muscular Atrophy: Further Delineation of Prenatal and Postnatal Features in 16 Patients. J Neuromuscul Dis. 2016 Nov;3(4):487-95. https://doi.org/10.3233/JND-160177
  • 6 Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet. 1998 Dec;63(6):1712-23. https://doi.org/10.1086/302160
  • 7 Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997 Jul;16(3):265-9. https://doi.org/10.1038/ng0797-265
  • 8 McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997 Jun;60(6):1411-22. https://doi.org/10.1086/515465
  • 9 Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S et al. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet. 1999 May;64(5):1340-56. https://doi.org/10.1086/302369
  • 10 Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A. 2004 Oct;130A(3):307-10. https://doi.org/10.1002/ajmg.a.30251
  • 11 Vezain M, Saugier-Veber P, Goina E, Touraine R, Manel V, Toutain A et al. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum Mutat. 2010 Jan;31(1):E1110-25. https://doi.org/10.1002/humu.21173
  • 12 Finkel R, Bertini E, Muntoni F, Mercuri E. 209th ENMC International Workshop: Outcome Measures and Clinical Trial Readiness in Spinal Muscular Atrophy 7-9 November 2014, Heemskerk, The Netherlands. Neuromuscul Disord. 2015 Jul;25(7):593-602. https://doi.org/10.1016/j.nmd.2015.04.009
  • 13 Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet. 2017 Jul;26(14):2768-80. https://doi.org/10.1093/hmg/ddx166
  • 14 Gubitz AK, Feng W, Dreyfuss G. The SMN complex. Exp Cell Res. 2004 May;296(1):51-6. https://doi.org/10.1016/j.yexcr.2004.03.022
  • 15 Feng W, Gubitz AK, Wan L, Battle DJ, Dostie J, Golembe TJ et al. Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet. 2005 Jun;14(12):1605-11. https://doi.org/10.1093/hmg/ddi168
  • 16 Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol. 2016 Aug;39:53-61. https://doi.org/10.1016/j.conb.2016.04.004
  • 17 Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000Prime Rep. 2015;7:04. https://doi.org/10.12703/P7-04
  • 18 Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: factors that modulate motor neurone vulnerability. Neurobiol Dis. 2017 Jun;102:11-20. https://doi.org/10.1016/j.nbd.2017.01.011
  • 19 Alías L, Bernal S, Barceló MJ, Also-Rallo E, Martínez-Hernández R, Rodríguez-Alvarez FJ et al. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet Test Mol Biomarkers. 2011 Sep;15(9):587-94. https://doi.org/10.1089/gtmb.2010.0253
  • 20 Farrar MA, Park SB, Vucic S, Carey KA, Turner BJ, Gillingwater TH et al. Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol. 2017 Mar;81(3):355-68. https://doi.org/10.1002/ana.24864
  • 21 Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007 Aug;22(8):1027-49. https://doi.org/10.1177/0883073807305788
  • 22 Finkel RS, Sejersen T, Mercuri E, Bertini E, Chen K, Crawford TO et al. 218th ENMC International Workshop: revisiting the consensus on standards of care in SMA Naarden, The Netherlands, 19-21 February 2016. Neuromuscul Disord. 2017 Jun;27(6):596-605. https://doi.org/10.1016/j.nmd.2017.02.014
  • 23 Zanoteli E, Maximino JR, Conti Reed U, Chadi G. Spinal muscular atrophy: from animal model to clinical trial. Funct Neurol. 2010 Apr-Jun;25(2):73-9.
  • 24 Ydewalle C, Sumner CJ. Spinal muscular atrophy therapeutics: where do we Stand? Neurotherapeutics. 2015 Apr;12(2):303-16. https://doi.org/10.1007/s13311-015-0337-y
  • 25 Sumner CJ. Therapeutics development for spinal muscular atrophy. NeuroRx. 2006 Apr;3(2):235-45. https://doi.org/10.1016/j.nurx.2006.01.010
  • 26 Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol. 2017 Jan;57(1):81-105. https://doi.org/10.1146/annurev-pharmtox-010716-104846
  • 27 Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. 2006 Feb;26(4):1333-46. https://doi.org/10.1128/MCB.26.4.1333-1346.2006
  • 28 Sivanesan S, Howell MD, Didonato CJ, Singh RN. Antisense oligonucleotide mediated therapy of spinal muscular atrophy. Transl Neurosci. 2013 Mar;4(1):1-7. https://doi.org/10.2478/s13380-013-0109-2
  • 29 Singh NN, Lee BM, DiDonato CJ, Singh RN. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem. 2015;7(13):1793-808. https://doi.org/10.4155/fmc.15.101
  • 30 Ottesen EW. ISS-N1 makes the First FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017 Jan;8(1):1-6. https://doi.org/10.1515/tnsci-2017-0001
  • 31 Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016 Mar;86(10):890-7. https://doi.org/10.1212/WNL.20180011201800112445
  • 32 Haché M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A, Xia S et al. Intrathecal Injections in Children With Spinal Muscular Atrophy: Nusinersen Clinical Trial Experience. J Child Neurol. 2016 Jun;31(7):899-906. https://doi.org/10.1177/0883073815627882
  • 33 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016 Dec;388(10063):3017-26. https://doi.org/10.1016/S0140-6736(16)31408-8
  • 34 Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med. 2017 Nov;377(18):1723-32. https://doi.org/10.1056/NEJMoa1702752
  • 35 Mercuri E, Finkel RS, Kirschner J, Chiriboga C, Kuntz N, Sun P et al. Efficacy and safety of nusinersen in children with later-onset spinal muscular atrophy (SMA): end of study results from the phase 3 CHERISH study. Neuromuscul Disord. 2017;27 Suppl. 2:S210. https://doi.org/10.1016/j.nmd.2017.06.418
  • 36 Hwu WL, De Vivo DC, Bertini E, Foster R, Gheuens S, Farwell W et al. Outcomes after 1-year in presymptomatic infants with genetically diagnosed spinal muscular atrophy (SMA) treated with nusinersen: interim results from the NURTURE study. Neuromuscul Disord. 2017;27 Suppl. 2:S212. https://doi.org/10.1016/j.nmd.2017.06.424
  • 37 Jablonka S, Sendtner M. Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther. 2017 Sep;24(9):506-13. https://doi.org/10.1038/gt.2017.46
  • 38 Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med. 2013 Jan;19(1):40-50. https://doi.org/10.1016/j.molmed.2012.11.002
  • 39 Nash LA, Burns JK, Chardon JW, Kothary R, Parks RJ. Spinal muscular atrophy: more than a disease of motor neurons? Curr Mol Med. 2016;16(9):779-92. https://doi.org/10.2174/1566524016666161128113338
  • 40 Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac L, Kissel JT et al. Gene therapy for spinal muscular atrophy type 1 shows potential to improve survival and motor functional outcomes. Mol Ther. 2016;24:S190. https://doi.org/10.1016/S1525-0016(16)33289-0.
  • 41 Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther. 2015 Mar;23(3):477-87. https://doi.org/10.1038/mt.2014.210
  • 42 Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017 Nov;377(18):1713-22. https://doi.org/10.1056/NEJMoa1706198
  • 43 Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009 Sep;85(3):408-13. https://doi.org/10.1016/j.ajhg.2009.08.002P
  • 44 Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C et al. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017 Jul;16(7):513-22. https://doi.org/10.1016/S1474-4422(17)30085-6
  • 45 Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z et al. Motorneurondisease: SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345(6197):688-93. https://doi.org/10.1126/science.1250127
  • 46 Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015 Jul;11(7):511-7. https://doi.org/10.1038/nchembio.1837
  • 47 Ratni H, Karp GM, Weetall M, Naryshkin NA, Paushkin SV, Chen KS et al. Specific correction of alternative survival motor neuron 2 splicing by small molecules: discovery of a potential novel medicine to treat spinal muscular atrophy. J Med Chem. 2016 Jul;59(13):6086-100. https://doi.org/10.1021/acs.jmedchem.6b00459
  • 48 Mercuri E, Kirschner J, Baranello G, Servais L, Goemans N, Pera M et al. Clinical studies of RG 7916 in patients with spinal muscular atrophy: SUNFISH part 1 study update. Neuromuscul Disord. 2017;27 Suppl. 2:S209. https://doi.org/10.1016/j.nmd.2017.06.415
  • 49 Charnas L, Voltz E, Pfister C, Peters T, Hartmann A, Berghs-Clairmont C et al. Safety and efficacy findings in the first-in-human trial (FIH) of the oral splice modulator branaplam in type 1 spinal muscular atrophy (SMA): interim results. Neuromuscul Disord. 2017;27 Suppl. 2:S207-8. https://doi.org/10.1016/j.nmd.2017.06.411
  • 50 Tizzano EF, Finkel RS. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscul Disord. 2017 Oct;27(10):883-9. https://doi.org/10.1016/j.nmd.2017.05.011
  • 51 Burns JK, Kothary R, Parks RJ. Opening the window: the case for carrier and perinatal screening for spinal muscular atrophy. Neuromuscul Disord. 2016 Sep;26(9):551-9. https://doi.org/10.1016/j.nmd.2016.06.459