CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(09): 576-585
DOI: 10.1590/0004-282X20200017
Articles

Evidence and practices of the use of next generation sequencing in patients with undiagnosed autosomal dominant cerebellar ataxias: a review

Evidências e práticas do uso do sequenciamento de nova geração em pacientes com ataxias cerebelares autossômicas dominantes não diagnosticadas: uma revisão
1   Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil.
,
1   Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil.
,
1   Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil.
,
2   Laboratório Genetika, Curitiba PR, Brazil.
,
3   Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Neurologia, Setor de Distúrbios do Movimento, Hospital das Clínicas, Curitiba PR, Brazil.
› Institutsangaben

ABSTRACT

Autosomal dominant cerebellar ataxias (ADCA) are heterogeneous diseases with a highly variable phenotype and genotype. They can be divided into episodic ataxia and spinocerebellar ataxia (SCA); the latter is considered the prototype of the ADCA. Most of the ADCA are caused by polyglutamine expansions, mainly SCA 1, 2, 3, 6, 7, 17 and Dentatorubral-pallidoluysian atrophy (DRPLA). However, 30% of patients remain undiagnosed after testing for these most common SCA. Recently, several studies have demonstrated that the new generation of sequencing methods are useful for the diagnose of these patients. This review focus on searching evidence on the literature, its usefulness in clinical practice and future perspectives.

RESUMO

As ataxias cerebelares autossômicas dominantes (ACAD) são doenças heterogêneas com fenótipo e genótipo altamente variáveis. Podem ser divididas em ataxia episódica e ataxia espinocerebelar (SCA), sendo este último considerado o protótipo do ACAD. A maior parte das ACAD são causadas por expansões de poliglutaminas, principalmente SCA 1, 2, 3, 6, 7, 17 e atrofia dentatorubro-palidoluisiana (DRPLA). No entanto, 30% dos pacientes permanecem sem diagnóstico após o teste para essas SCA mais comuns. Recentemente, vários estudos têm demonstrado que a nova geração de métodos de sequenciamento são ferramentas úteis para o diagnóstico desses pacientes. Esta é uma revisão sistemática da literatura, com foco em sua utilidade na prática clínica e em perspectivas futuras.



Publikationsverlauf

Eingereicht: 18. November 2019

Angenommen: 28. Januar 2020

Artikel online veröffentlicht:
13. Juni 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010 Sep;9(9):885-94. http://dx.doi.org/10.1016/S1474-4422(10)70183-6
  • 2 Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: Phenotype differences in genetically defined subtypes? Ann Neurol. 1997 Dec;42(6):924-32. https://doi.org/10.1002/ana.410420615
  • 3 Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004 May;3(5):291-304. https://doi.org/10.1016/S1474-4422(04)00737-9
  • 4 Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain. 1982 Mar;105(Pt 1):1-28. https://doi.org/10.1093/brain/105.1.1
  • 5 Juvonen V, Hietala M, Kairisto V, Savontaus ML. The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand. 2005 Mar;111(3):154-62. https://doi.org/10.1111/j.1600-0404.2005.00349.x
  • 6 Sullivan R, Yau WY, O’Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019 Feb;266(2):533-44. https://doi.org/10.1007/s00415-018-9076-4
  • 7 Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, et al. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell. 2018 Feb;172(5):924-36.e11. https://doi.org/10.1016/j.cell.2018.02.006
  • 8 Genis D, Ortega-Cubero S, San Nicolás H, Corral J, Gardenyes J, de Jorge L, et al. Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology. 2018 Nov;91(21):e1988-98. https://doi.org/10.1212/WNL.20200017202000176550
  • 9 Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies Neuroepidemiology. 2014;42(3):174-83. https://doi.org/10.1159/000358801
  • 10 van de Warremburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002 Mar;58(5):702-8. https://doi.org/10.1212/wnl.58.5.702
  • 11 Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain. 2009 Jun;132(Pt 6):1577-88. https://doi.org/10.1093/brain/awp056
  • 12 Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A, et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol. 2013 Jun;70(6):746-55. https://doi.org/10.1001/jamaneurol.2013.1707
  • 13 Storey E, du Sart D, Shaw J, Lorentzos P, Kelly L, McKinley Gardner R, et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000 Dec;95(4):351-7. https://doi.org/10.1002/1096-8628(20001211)95:4%3C351::aid-ajmg10%3E3.0.co;2-r
  • 14 Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004 May;61(5):727-33. https://doi.org/10.1001/archneur.61.5.727
  • 15 Alonso E, Martínez-Ruano L, De Biase I, Mader C, Ochoa A, Yescas P, et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord. 2007 May;22(7):1050-3. http://dx.doi.org/10.1002/mds.21470
  • 16 Velázquez-Pérez L, Santos FN, García R, Paneque HM, Hechavarría PR. Epidemiology of Cuban hereditary ataxia. Rev Neurol. 2001 Apr;32(7):606-11.
  • 17 Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol. 2000 Apr;57(4):540-4. https://doi.org/10.1001/archneur.57.4.540
  • 18 Watanabe H, Tanaka F, Matsumoto M, Doyu M, Ando T, Mitsuma T, et al. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet. 1998 Jan;53(1):13-9. https://doi.org/10.1034/j.1399-0004.1998.531530104.x
  • 19 Juvonen V, Hietala M, Kairisto V, Savontaus ML. The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand. 2005 Mar;111(3):154-62. https://doi.org/10.1111/j.1600-0404.2005.00349.x
  • 20 Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol. 2001 Dec;50(6):796-800. https://doi.org/10.1002/ana.10048
  • 21 Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease. Relation with disease duration, subtypes, and (CAG). Arch Neurol. 2001 Jun;58(6):899-904. https://doi.org/10.1001/archneur.58.6.899
  • 22 Cintra VP, Lourenço CM, Marques SE, Oliveira LM, Tumas V, Marques Junior W. Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci. 2014 Oct;347(1-2):375-9. https://doi.org/10.1016/j.jns.2014.10.036
  • 23 Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics. 2012;67(5):443-9. https://doi.org/10.6061/clinics/2012(05)07
  • 24 Rangel DM, Nóbrega PR, Braga-Neto P, Saraiva-Pereira ML, Jardim LB, Braga-Neto P. A case series of hereditary ataxias in a highly cosanguineous population from Northeast Brazil. Parkinsonism Relat Disord. 2019 Apr;61:193-7. https://doi.org/10.1016/j.parkreldis.2018.10.027
  • 25 de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil - frequencies and modulating effects of related genes. Cerebellum. 2014 Feb;13(1):17-28. https://doi.org/10.1007/s12311-013-0510-y
  • 26 Nascimento FA, Rodrigues VOR, Pelloso FC, Camargo CHF, Moro A, Raskin S, et al. Spinocerebellar ataxias in Southern Brazil: Genotypic and phenotypic evaluation of 213 families. Clin Neurol Neurosurg 2019; Sep; 184: 105427. https://doi.org/10.1016/j.clineuro.2019.105427
  • 27 Braga-Neto P, Pedroso JL, Furtado GV, Gheno TC, Saraiva-Pereira ML, Jardim LB, et al. Dentatorubro-Pallidoluysian Atrophy (DRPLA) among 700 families with ataxia in Brazil. Cerebellum. 2017 Aug;16(4):812-6. https://doi.org/10.1007/s12311-017-0862-9
  • 28 Silveira I, Lopes-Cendes I, Kish S, Maciel P, Gaspar C, Coutinho P, et al. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology. 1996 Jan;46(1):214-8.
  • 29 Lopes-Cendes I , Teive HG , Calcagnotto ME , Da Costa JC , Cardoso F , Viana E, et al. Frequência das diferentes mutações causadoras de ataxia espinocerebelar (SCA1, SCA2, MJD / SCA3 e DRPLA) em um grande grupo de pacientes brasileiros. Arq Neuropsiquiatr. 1997 Sep;55(3B):519-29.
  • 30 A Trott, LB Jardima, HT Ludwiga, JAM Sautea, O Artigala’s, et al. Letter to the editor: Spinocerebellar ataxias in 114 Brazilian families: clinical and molecular findings. Clin Genet. 2006;70:173-6. https://doi.org10.1111/j.1399-0004.2006.00656.x
  • 31 Freund AA, Scola RH, Teive HA, Arndt RC, Costa-Ribeiro MC, Alle LF, Werneck LC. Microsatellite and allele frequency in unaffected and affected individuals. Arq Neuropsiquiatr. 2009;67(4):1124-32.
  • 32 Subramony SH, Filla A. Autosomal dominant spinocerebellar ataxias ad infinitum? Neurology. 2001 Feb;56(3):287-9. https://doi.org/10.1212/wnl.56.3.287
  • 33 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7. https://doi.org/10.1073/pnas.74.12.5463
  • 34 Hui P. Next generation sequencing: chemistry, technology and applications. Top Curr Chem. 2014;336:1-18. https://doi.org/10.1007/128_2012_329
  • 35 Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018 Jan;19(1):1-8. https://doi.org/10.1007/s10048-017-0532-6
  • 36 Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17(6):444-51. https://doi.org/10.1038/gim.2014.122
  • 37 Marelli C, Guissart C, Hubsch C, Renaud M, Villemin JP, Larrieu L, et al. Mini-exome coupled to read-depth based copy number variation analysis in patients with inherited ataxias. Hum Mutat. 2016 Dec;37(12):1340-53. https://doi.org/10.1002/humu.23063
  • 38 Bamshad MT, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011 Sep;12(11):745-55. https://doi.org/10.1038/nrg303
  • 39 van de Warrenburg B, Schouten M, de Bot S, Vermeer S, Meijer R, Pennings M, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet. 2017 Mar;25(3):393-0. https://doi.org/10.1038/ejhg.2016.168
  • 40 Pyle A, Smertenko T, Bargiela D, Helen Griffin, Jennifer Duff, Marie Appleton, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015 Feb;138(2):276-83. https:// doi.org/10.1093/brain/awu348
  • 41 Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013 Oct;136(Pt 10):3106-18. https://doi.org/10.1093/brain/awt236
  • 42 Fogel B, Lee H, Deignan J, Strom SP, Kantarci S, Wang X, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014 Oct;71(10):1237-46. https://doi.org/10.1001/jamaneurol.2014.1944
  • 43 Hadjivassiliou M, Martindale J, Shanmugarajah P, Grünewald RA, Sarrigiannis PG, Beauchamp N, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017 Apr;88(4):301-9. https://doi.org/10.1136/jnnp-2016-314863
  • 44 Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017 Jun;140(6):1579-94. https://doi.org/10.1093/brain/awx081
  • 45 Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine C, Mochel F, et al. Efficacy of exome targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018 May;75(5):591-9. https://doi.org/10.1001/jamaneurol.2017.5121
  • 46 Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, et al. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014 Jan;35(1):45-9. https://doi.org/10.1002/humu.22451
  • 47 Iqbal Z, Rydning SL, Wedding IM, Koht J, Pihlstrøm L, Rengmark AH, et al. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One. 2017 Mar;12(3):e0174667. https://doi.org/10.1371/journal.pone.0174667
  • 48 Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, Aida N, et al. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics. 2013 Oct;14(3-4):225-32. https://doi.org/10.1007/s10048-013-0375-8
  • 49 Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010 Dec;133(Pt 12):3510-8. https://doi.org/10.1093/brain/awq323
  • 50 Pena L, Jiang YH, Schoch K, Spillmann RC, Walley N, Stong N, et al. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet Med. 2018 Apr;20(4):464-9. https://doi.org/10.1038/gim.2017.128
  • 51 Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum Mutat. 2015 Aug;36(8):815-22. https://doi.org/10.1002/humu.22813
  • 52 Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 2017 Nov;27(11):1895-903. https://doi.org/10.1101/gr.225672.117
  • 53 Tankard RM, Delatycki MB, Lockhart PJ, Bahlo M. Detecting known repeat expansions with standard protocol next generation sequencing, towards developing a single screening test for neurological repeat expansion disorders. bioRxiv. 2017 Jun:1-15. https://doi.org/10.1101/157792
  • 54 Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, et al. STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 2018;19:121. https://doi.org/10.1186/s13059-018-1505-2
  • 55 Tang H, Kirkness EF, Lippert C, Biggs WH, Fabani M, Guzman E, et al. Profiling of short-tandem-repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet. 2017 Nov;101(5):700-15. https://doi.org/10.1016/j.ajhg.2017.09.013
  • 56 Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, et al. STRetch: Detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 2018;19:121.
  • 57 Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M. Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet. 2018 Dec;103(6):858-73. https://doi.org/10.1016/j.ajhg.2018.10.015
  • 58 Bahlo M, Bennett MF, Degorski P, Tankard RM, Delatycki MB, Lockhart PJ. Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Res. 2018 Jun 13;7. https://doi.org/10.12688/f1000research.13980.1
  • 59 de Leeuw R, Garnier D, Kroon RMJM, Horlings CGC, de Meijer E, Buermans H, et al. Diagnostics of short tandem repeat expansion variants using massively parallel sequencing and componential tools. Eur J Hum Genet. 2019 Mar;27:400-7. https://doi.org/10.1038/s41431-018-0302-4
  • 60 Gasser T, Finsterer J, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, et al. EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias. Eur J Neurol. 2010 Feb;17(2):179-88. https://doi.org/10.1111/j.1468-1331.2009.02873.x
  • 61 de Silva R, Greenfield J, Cook A, Bonney H, Vallortigara J, Hunt B, et al. Guidelines on the diagnosis and management of the progressive ataxias. Orphanet J Rare Dis. 2019;14:51. https://doi.org/10.1186/s13023-019-1013-9