CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2019; 77(02): 106-114
DOI: 10.1590/0004-282X20180147
Article

The anticonvulsant effects of Ducrosia anethifolia (Boiss) essential oil are produced by its main component alpha-pinene in rats

Os efeitos anticonvulsivantes do óleo essencial de Ducrosia anethifolia (Boiss) são realizados pelo seu principal componente alfa-pineno em ratos
Mahnaz Zamyad
1   Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
,
1   Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
,
Saeed Esmaeili-Mahani
1   Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
,
Ali Mostafavi
2   Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Chemistry, Kerman, Iran
,
Vahid Sheibani
3   Kerman University of Medical Sciences, Kerman Neuroscience Research Center (KNRC), Laboratory of Molecular Neuroscience, Kerman, Iran
› Institutsangaben

ABSTRACT

Ducrosia anethifolia has been recommended as a remedy for neurological disorders. However, the anticonvulsant effects of D. anethifolia essential oil (DAEO) and its major constituent α-pinene have not yet been clarified.

Methods: A rat model of pentylenetetrazole (PTZ)-induced convulsions was used. Oxidant and antioxidant parameters were assayed in the temporal lobe.

Results: The data showed that DAEO (50, 100 and 200 mg/kg, i.p.) and α-pinene (0.2 and 0.4 mg/kg i.p.) delayed the initiation time, and reduced the duration of myoclonic and tonic-clonic seizures following PTZ injection. The PTZ produced oxidative stress so that malondialdehyde and hydrogen peroxide levels were increased and catalase and peroxidase activity decreased. Pretreatment with DAEO and α-pinene significantly inhibited the above-mentioned enzymatic changes in PTZ-treated animals.

Conclusion: The results suggest that α-pinene, at teast in part, was responsible for the induction of the anticonvulsant and antioxidant effects of DAEO in rats.

RESUMO

A Ducrosia anethifolia tem sido recomendada como remédio para os distúrbios neurológicos. No entanto, os efeitos anticonvulsivantes do óleo essencial de Ducrosia anethifolia (DAEO) e do seu principal constituinte atfa-pineno (α-pineno) ainda não foram clarificados.

Métodos: Foi utilizado um modelo de rato de convulsões induzidas por pentilenotetrazol (PTZ). Os parâmetros oxidante e antioxidante foram ensaiados no lobo temporal do cérebro.

Resultados: Os dados mostraram que DAEO (50, 100 e 200 mg / kg, i.p.) e α-pineno (0,2 e 0,4 mg / kg i.p.) retardaram o tempo de iniciação e reduziram a duração das crises mioclçnicas e tçnico-clçnicas após a injeção de PTZ. O PTZ produziu estresse oxidativo, de modo que os níveis de malondialdeído (MDA) e de peróxido de hidrogênio aumentaram e a atividade da catalase e da peroxidase diminuiu. O pré-tratamento com DAEO e α-pineno inibiu significativamente as alterações enzimáticas mencionadas em animais tratados com PTZ.

Conclusão: O resultado sugere que α-pineno, peto menos em parte, é responsável peta indução dos efeitos anticonvulsivantes e antioxidantes da DAEO em ratos.

Support

Shahid Bahonar University and Kerman Neuroscience Research Center (KNRC/94).




Publikationsverlauf

Eingereicht: 29. November 2017

Angenommen: 16. Oktober 2018

Artikel online veröffentlicht:
21. August 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Löscher W. Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci. 2002 Mar;23(3):113-8. https://doi.org/10.1016/S0165-6147(00)01974-X
  • 2 Barros L, Ferreira MJ, Queiros B, Ferreira IC, Baptista P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007;103(2):413-9. https://doi.org/10.1016/j.foodchem.2006.07.038
  • 3 Rauca C, Zerbe R, Jantze H. Formation of free hydroxyl radicals after pentylenetetrazol-induced seizure and kindling. Brain Res. 1999 Nov;847(2):347-51. https://doi.org/10.1016/S0006-8993(99)02084-3
  • 4 Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Nov;827(1):65-75. https://doi.org/10.1016/j.jchromb.2005.04.023
  • 5 Golechha M, Bhatia J, Ojha S, Arya DS. Hydroalcoholic extract of Emblica officinalis protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. Pharm Biol. 2011 Nov;49(11):1128-36. https://doi.org/10.3109/13880209.2011.571264
  • 6 Mehla J, Reeta KH, Gupta P, Gupta YK. Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model. Life Sci. 2010 Nov;87(19-22):596-603. https://doi.org/10.1016/j.lfs.2010.09.006
  • 7 Mozaffarian V. A dictionary of Iranian plant names: Latin, English, Persian. City: Farhang Mo'aser; 1996.
  • 8 Haghi G, Safaei A, Safari J. Extraction and determination of the main components of the essential oil of Ducrosia anethifolia by GC and GC/MS. Iran J Pharm Res. 2004;3(suppl 2):90-91.
  • 9 Hajhashemi V, Rabbani M, Ghanadi A, Davari E. Evaluation of antianxiety and sedative effects of essential oil of Ducrosia anethifolia in mice. Clinics (São Paulo). 2010;65(10):1037-42. https://doi.org/10.1590/S1807-59322010001000020
  • 10 Stavri M, Mathew KT, Bucar F, Gibbons S. Pangelin, an antimycobacterial coumarin from Ducrosia anethifolia. Planta Med. 2003 Oct;69(10):956-9. https://doi.org/10.1055/s-2003-45109
  • 11 Mostafavi A, Afzali D, Mirtadzadini S. Chemical composition of the essential oil of Ducrosia anethifolia (DC.) Boiss. from Kerman Province in Iran. J Essent Oil Res. 2008;20(6):509-12. https://doi.org/10.1080/10412905.2008.9700073
  • 12 Guilhon CC, Raymundo LJ, Alviano DS, Blank AF, Arrigoni-Blank MF, Matheus ME et al. Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J Ethnopharmacol. 2011 May;135(2):406-13. https://doi.org/10.1016/j.jep.2011.03.032
  • 13 Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005 Mar;53(5):1765-8. https://doi.org/10.1021/jf040019b
  • 14 Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94. https://doi.org/10.1016/0013-4694(72)90177-0
  • 15 Akamatsu N, Fueta Y, Endo Y, Tamagawa A, Yuhi T, Uozumi T et al., editors. The therapeutic effects of high-frequency transcranial magnetic stimulation on pentylenetetrazol-induced status epilepticus in rats. Int Congr Ser. 2005 Mar;1278423-6. https://doi.org/10.1016/j.ics.2004.11.130
  • 16 Abbasnejad M, Keramat B, Mahani E, Rezaeezade-Roukerd M. Effect of hydro-methanolic extract of sour orange flowers, Citrus aurantium, on pentylentetrazole induced seizure in male rats. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul. 2012;14(5):20-8.
  • 17 Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207(4):604-11. https://doi.org/10.1007/s004250050524
  • 18 Dhindsa RS, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot. 1981;32(1):79-91. https://doi.org/10.1093/jxb/32.1.79
  • 19 Plewa MJ, Smith SR, Wagner ED. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res. 1991 Mar;247(1):57-64. https://doi.org/10.1016/0027-5107(91)90033-K
  • 20 De Deyn PP, D'Hooge R, Marescau B, Pei YQ. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res. 1992 Jul;12(2):87-110. https://doi.org/10.1016/0920-1211(92)90030-W
  • 21 Eraković V, Župan G, Varljen J, Simonić A. Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochem Int. 2003 Jan;42(2):173-8. https://doi.org/10.1016/S0197-0186(02)00070-0
  • 22 Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014 Sep;10:1693-705. https://doi.org/10.2147/NDT.S50371
  • 23 Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009 Mar;7(1):65-74. https://doi.org/10.2174/157015909787602823
  • 24 Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev. 2009 Apr-Jun;2(2):63-7. https://doi.org/10.4161/oxim.2.2.7944
  • 25 Noda Y, Anzai K, Mori A, Kohno M, Shinmei M, Packer L. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem Mol Biol Int. 1997 Jun;42(1):35-44. https://doi.org/10.1080/15216549700202411
  • 26 Liapi C, Anifandis G, Chinou I, Kourounakis AP, Theodosopoulos S, Galanopoulou P. Antinociceptive properties of 1,8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents. Planta Med. 2007 Oct;73(12):1247-54. https://doi.org/10.1055/s-2007-990224
  • 27 Guimarães AG, Quintans JS, Quintans LJ Jr. Monoterpenes with analgesic activity—a systematic review. Phytother Res. 2013 Jan;27(1):1-15. https://doi.org/10.1002/ptr.4686
  • 28 Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol. 2000 Jul;71(1-2):65-75. https://doi.org/10.1016/S0378-8741(99)00192-0
  • 29 Gale K. GABA and epilepsy: basic concepts from preclinical research. Epilepsia. 1992;33 Suppl 5:S3-12.
  • 30 Melo MS, Sena LC, Barreto FJ, Bonjardim LR, Almeida JR, Lima JT et al. Antinociceptive effect of citronellal in mice. Pharm Biol. 2010 Apr;48(4):411-6. https://doi.org/10.3109/13880200903150419
  • 31 Quintans-Júnior LJ, Melo MS, Sousa DP, Araújo AA, Onofre AC, Gelain DP et al. Antinociceptive effects of citronellal in formalin-, capsaicin-, and glutamate-induced orofacial nociception in rodents and its action on nerve excitability. J Orofac Pain. 2010;24(3):305-12.
  • 32 Quintans-Júnior LJ, Melo MS, Sousa DP, Araujo AA, Onofre AC, Gelain DP et al. Antinociceptive effects of citronellal in formalin-, capsaicin-, and glutamate-induced orofacial nociception in rodents and its action on nerve excitability. J Orofac Pain. 2010;24(3):305-12. Duplicata da 31
  • 33 Crump FT, Dillman KS, Craig AM. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci. 2001 Jul;21(14):5079-88. https://doi.org/10.1523/JNEUROSCI.21-14-05079.2001
  • 34 Zhu X, Han X, Blendy JA, Porter BE. Decreased CREB levels suppress epilepsy. Neurobiol Dis. 2012 Jan;45(1):253-63. https://doi.org/10.1016/j.nbd.2011.08.009
  • 35 Elisabetsky E, Brum LF, Souza DO. Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine. 1999 May;6(2):107-13. https://doi.org/10.1016/S0944-7113(99)80044-0
  • 36 Sampaio LF, Maia JG, Parijós AM, Souza RZ, Barata LE. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother Res. 2012 Jan;26(1):73-7. https://doi.org/10.1002/ptr.3518
  • 37 Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie (Warsaw, Poland: 1960). 2004;57(9-10):453-5.
  • 38 Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013 Oct;1(1):483-91. https://doi.org/10.1016/j.redox.2013.07.006
  • 39 Azam F, Prasad MV, Thangavel N. Targeting oxidative stress component in the therapeutics of epilepsy. Curr Top Med Chem. 2012;12(9):994-1007. https://doi.org/10.2174/156802612800229224
  • 40 Bast A, Haenen GR, Doelman CJ. Oxidants and antioxidants: state of the art. Am J Med. 1991 Sep;91(3 3C):2S-13S. https://doi.org/10.1016/0002-9343(91)90278-6
  • 41 Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health. 2011 Jun;27(5):447-53. https://doi.org/10.1177/0748233710388452