CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2019; 77(01): 39-46
DOI: 10.1590/0004-282X20180146
Article

Protective effect of extract of the Camellia japonica L. on cerebral ischemia-reperfusion injury in rats

Efeito protetor do extrato da Camellia japonica L. na lesão de reperfusão isquêmica cerebral em ratos
Weizhuo Lu
1   Hefei Technology College, Medical Branch, Hefei, China
,
Ling Xv
1   Hefei Technology College, Medical Branch, Hefei, China
,
2   Anhui Medical University, Department of Pharmacology, Hefei, China
› Author Affiliations

ABSTRACT

Objective: We investigated the protective effect of the extract of the Camellia japonica L. flower on cerebral ischemia-reperfusion injury in rats.

Methods: The rat ischemia-reperfusion injury was induced by middle cerebral artery occlusion for 90 minutes and reperfusion for 48 hours. The animals received an intravenous injection once a day of 20, 40, 80 mg/kg extract of C. japonica for three consecutive days before the ischemia reperfusion. The learning and memory function, the infarct volume, serum malondialdehyde (MDA) level and lactate dehydrogenase activity, and extravasation of immunoglobulin G (IgG) into cerebral parenchyma were assessed as the cell damage index.

Results: Pretreatment with extract of C. japonica markedly reduced the infarct volume, serum malondialdehyde level and lactate dehydrogenase activity, and markedly inhibited the extravasation of IgG. Moreover, pretreatment with extract of C. japonica may also inhibit the learning and memory deficits induced by an ischemia-reperfusion injury.

Conclusion: It was concluded that pretreatment with extract of C. japonica has a protective effect on cerebral ischemia-reperfusion injury in rats.

RESUMO

Objetivo: Investigamos o efeito protetor do extrato da flor de Camellia japonica L. (ECJ) na lesão de reperfusão isquêmica cerebral (I/R) em ratos.

Métodos: A lesão de I/R de rato foi induzida por uma oclusão da artéria cerebral média por 90 minutos e reperfusão por 48 horas. Os animais receberam uma injeção intravenosa uma vez ao dia de 20, 40, 80 mg/kg de ECJ por três dias consecutivos antes da I/R. A função de aprendizagem e memória, o volume do infarto, o nível sérico de malondialdeído (MDA), a atividade da desidrogenase láctica e o extravasamento de imunoglobulina (IgG) no parênquima cerebral foram avaliados como índices de dano celular.

Resultados: O pré-tratamento com ECJ reduziu acentuadamente o volume do infarto, o nível sérico de MDA e a atividade da desidrogenase láctica, e inibiu marcadamente o extravasamento de IgG. Além disso, o pré-tratamento com ECJ também poderia inibir os déficits de aprendizado e memória induzidos pela lesão de I/R.

Conclusão: O pré-tratamento com ECJ tem um efeito protetor contra lesão cerebral de I/R em ratos.

Support

This work was supported by a grant from the Natural Science Foundation of Hefei Technology College (No. 201814KJA009), and supported by Grants for Scientific Research of BSKY (No. XJ201612) from Anhui Medical University.




Publication History

Received: 21 April 2018

Accepted: 28 September 2018

Article published online:
21 August 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Liu Z, Chen X, Gao Y, Sun S, Yang L, Yang Q et al. Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Scient Rep.. 2015 Apr;5:9490. https://doi.org/10.1038/srep09490
  • 2 Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011 Jan;6(1):11. https://doi.org/10.1186/1750-1326-6-11
  • 3 Kumar GP Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012 Jul;6(12):81-90. https://doi.org/10.4103/0973-7847.99898
  • 4 Wang T, Duan S, Wang H, Sun S, Han B, Fu F. Neurological function following cerebral ischemia/reperfusion is improved by the Ruyi Zhenbao pill in a rats. Biomed Rep. 2016 Feb;4(2):161-6. https://doi.org/10.3892/br.2016.568
  • 5 Lee JH, Kim JW, Ko NY, Mun SH, Kim DK, Kim JD et al. Camellia japonica suppresses immunoglobulin E-mediated allergic response by the inhibition of Syk kinase activation in mast cells. Clin Exp Allergy. 2008 May;38(5):794-804. https://doi.org/10.1111/j.1365-2222.2008.02936.x
  • 6 Kim KY, Davidson PM, Chung HJ. Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J Food Prot. 2001 Aug;64(8):1255-60. https://doi.org/10.4315/0362-028X-64.8.1255
  • 7 Onodera K, Hanashiro K, Yasumoto T. Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Biosci Biotechnol Biochem. 2006 Aug;70(8):1995-8. https://doi.org/10.1271/bbb.60112
  • 8 Piao MJ, Yoo ES, Koh YS, Kang HK, Kim J, Kim YJ et al. Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci. 2011; 12(4):2618-30. https://doi.org/10.3390/ijms12042618
  • 9 Woo Y, Lee H, Jeong YS, Shin GY, Oh JG, Kim JS et al. Antioxidant potential of selected korean edible plant extracts. BioMed Res Int. 2017;2017:7695605. https://doi.org/10.1155/2017/7695605
  • 10 Park SH, Shim BS, Yoon JS, Lee HH, Lee HW, Yoo SB et al. Vascular protective effect of an ethanol extract of Camellia japonica fruit: endothelium-dependent relaxation of coronary artery and reduction of smooth muscle cell migration. Oxid Med Cell Longev., 2016;2016:ID6309565. https://doi.org/10.1155/2016/6309565
  • 11 Weizhuo Lu GC, Wang H, Chu S. Protective effect of extract of Camellia japonica L on hippocampal neurons subjected to anoxia-reoxygenation injury. J Huainan Vocat Tech Coll. 2017;17(4):3.
  • 12 Wen JY, Chen ZW. Protective effect of pharmacological preconditioning of total flavones of abelmoschl manihot on cerebral ischemic reperfusion injury in rats. Am J Chin Med. 2007;35(4):653-61. https://doi.org/10.1142/S0192415X07005144
  • 13 Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol. 2016 Nov 4;192:140-7. https://doi.org/10.1016/j.jep.2016.07.016
  • 14 Zhu L, Zhang L, Zhan L, Lu X, Peng J, Liang L et al. The effects of Zibu Piyin Recipe components on scopolamine-induced learning and memory impairment in the mouse. J Ethnopharmacol. 2014;151(1):576-82. https://doi.org/10.1016/j.jep.2013.11.018
  • 15 Heo YM, Shin MS, Lee JM, Kim CJ, Baek SB, Kim KH et al. Treadmill exercise ameliorates short-term memory disturbance in scopolamine-induced amnesia rats. Int Neurourol J. 2014 Mar;18(1):16-22. https://doi.org/10.5213/inj.2014.18.1.16
  • 16 Su Z, Han D, Sun B, Qiu J, LI Y, LI M et al. Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats. J Neurotrauma. 2009 Oct;26(10):1695-706. https://doi.org/10.1089/neu.2008.0519
  • 17 Liu ZW, Zhang T, Yang Z. Involvement of nitric oxide in spatial memory deficits in status epilepticus rats. Neurochem Res. 2007 Nov;32(11):1875-83. https://doi.org/10.1007/s11064-007-9374-1
  • 18 Chu B, Zhou Y, Zhai H, LI L, Sun L, LI Y. The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia-reperfusion injury. Can J Physiol Pharmacol. 2018 Jun;96(6):611-7. https://doi.org/10.1139/cjpp-2017-0586
  • 19 Zhang L, Fu F, Zhang X, Zhu M, Wang T, Fan H. Escin attenuates cognitive deficits and hippocampal injury after transient global cerebral ischemia in mice via regulating certain inflammatory genes. Neurochem Int. 2010 Sep;57(2):119-27. https://doi.org/10.1016/j.neuint.2010.05.001
  • 20 Tao J, Cui Y, Duan Y, Zhang N, Wang C, Zhang F. Puerarin attenuates locomotor and cognitive deficits as well as hippocampal neuronal injury through the PI3K/ Akt1/GSK-3β signaling pathway in an in vivo model of cerebral ischemia. Oncotarget. 2017 Nov;8(63):106283-95. https://doi.org/10.18632/oncotarget.22290
  • 21 Xiao Z, Ren P, Chao Y, Wang Q, Kuai J, Lv M et al. Protective role of isoflurane pretreatment in rats with focal cerebral ischemia and the underlying molecular mechanism. Mol Med Rep. 2015 Jul;12(1):675-83. https://doi.org/10.3892/mmr.2015.3408
  • 22 Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct. 2015 Apr;11: 18. https://doi.org/10.1186/s12993-015-0064-x
  • 23 Luo SY, Chen S, Qin YD, Chen ZW. Urotensin-receptor antagonist SB-710411 protects rat heart against ischemia-reperfusion injury via RhoA/ ROCK pathway. PLoS One. 2016 Jan;11(1):e0146094. https://doi.org/10.1371/journal.pone.0146094
  • 24 Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013 Dec;19(12):1584-96. https://doi.org/10.1038/nm.3407
  • 25 DeMars KM, McCrea AO, Siwarski DM, Sanz BD, Yang C, Candelario-Jalil E. Protective effects of L-902,688, a prostanoid EP4 receptor agonist, against acute blood-brain barrier damage in experimental ischemic stroke. Front Neurosci. 2018;12:89. https://doi.org/10.3389/fnins.2018.00089