CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2016; 74(09): 713-717
DOI: 10.1590/0004-282X20160113
ARTICLES

Elastomers three-dimensional biomodels proven to be a trustworthy representation of the angiotomographic images

Biomodelos tridimensionais de elastçmero provaram ser uma representação confiável de imagens angiotomográficas
André Giacomelli Leal
1   Instituto de Neurologia de Curitiba – INC , Divisão de Neurocirurgia Vascular, Curitiba PR, Brasil;
,
Leonardo Brancia Pagnan
2   Faculdade Evangélica do Paraná, Faculdade de Medicina, Curitiba PR, Brasil;
,
Raphael Teruaki Kondo
2   Faculdade Evangélica do Paraná, Faculdade de Medicina, Curitiba PR, Brasil;
,
José Aguiomar Foggiatto
3   Universidade Tecnológica Federal do Paraná - UTPFR, Divisão de Prototipagem Rápida, Curitiba PR, Brasil;
,
Guilherme José Agnoletto
4   Instituto de Neurologia de Curitiba – INC , Departamento de Neurocirurgia, Curitiba PR, Brasil.
,
Ricardo Ramina
4   Instituto de Neurologia de Curitiba – INC , Departamento de Neurocirurgia, Curitiba PR, Brasil.
› Author Affiliations

ABSTRACT

Intracranial aneurysm (IA) rupture is responsible for 80% of spontaneous arachnoid hemorrhages and associated with an extremely high mortality rate. Two possible surgical interventions are endovascular embolization and microsurgical clipping. Three-dimensional (3D) prototyping models help in surgical planning minimizing perioperative risks in both methods and reducing operating time.

Methods 3D biomodels were printed with flexible material (elastomer) using angiotomographic DICOM acquired images and compared to 3D digital subtraction angiography (DSA) images.

Results 3D biomodels represented the aneurysm angioarchitecture exactly, especially the neck and domus features.

Conclusion Elastomers 3D biomodels proved to be a trustworthy representation of the angiotomographic images and could be used to help surgical planning in IA treatment.

RESUMO

A ruptura dos aneurismas intracranianos é responsável por 80% das hemorragias subaracnóideas espontâneas e está associada a uma taxa de mortalidade extremamente alta. Duas intervenções cirúrgicas viáveis são embolização endovascular e clipagem microcirúrgica. Os modelos de prototipagem tridimensional (3D) auxiliam no planejamento cirúrgico e na diminuição dos riscos intra-operatórios nos dois procedimentos e redução do tempo da cirurgia.

Métodos Foram impressos biomodelos em 3D com material flexível (elastçmero) utilizando imagens DICOM de angiotomografia e comparados com imagens de angiografia por subtração digital em 3D (DAS).

Resultados Biomodelos em 3D representam com exatidão a angioarquitetura do aneurisma, particularmente os detalhes do colo e domus.

Conclusão Biomodelos em 3D com elastçmeros mostraram ser uma representação confiável das imagens angiotomográficas, podendo ser utilizados no planejamento cirúrgico no tratamento de IA.



Publication History

Received: 15 March 2016

Accepted: 13 June 2016

Article published online:
06 September 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Vega C, Kwoon JV, Lavine SD. Intracranial aneurysms: current evidence and clinical practice. Am Fam Physician. 2002;66(4):601-8.
  • 2 Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354(4):387-96. doi:10.1056/NEJMra052732
  • 3 Li H, Pan R, Wang H, Rong X, Yin Z, Milgrom DP et al. Clipping versus coiling for ruptured intracranial aneurysms: a systematic review and meta-analysis. Stroke. 2013;44(1):29-37. doi:10.1161/STROKEAHA.112.663559
  • 4 Guglielmi G, Viñuela F, Duckwiler G, Dion J, Lylyk P, Berenstein A et al. Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. J Neurosurg. 1992;77(4):515-24. doi:10.3171/jns.1992.77.4.0515
  • 5 Lawton MT, Spetzler RF. Surgical management of giant intracranial aneurysms: experience with 171 patients. Clin Neurosurg. 1995;42:245-66.
  • 6 Rinne J, Hernesniemi J, Niskanen M, Vapalahti M. Management outcome for multiple intracranial aneurysms. Neurosurgery. 1995;36(1):31-7. doi:10.1227/00006123-199501000-00003
  • 7 Chueh JY, Wakhloo AK, Gounis MJ. Neurovascular modeling: small-batch manufacturing of silicone vascular replicas. AJNR Am J Neuroradiol. 2009;30(6):1159-64. doi:10.3174/ajnr.A1543
  • 8 Müller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14(6):899-914. doi:10.1097/00001665-200311000-00014
  • 9 Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005;63(7):1006-15. doi:10.1016/j.joms.2005.03.016
  • 10 D’Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI et al. Cerebrovascular biomodelling: a technical note. Surg Neurol. 1999;52(5):490-500. doi:10.1016/S0090-3019(99)00143-3
  • 11 Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009;65(4):719-25. doi:10.1227/01.NEU.0000354350.88899.07
  • 12 Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg. 2004;100(1):139-45. doi:10.3171/jns.2004.100.1.0139
  • 13 Khan IS, Kelly PD, Singer RJ. Prototyping of cerebral vasculature physical models. Surg Neurol Int. 2014;5(1):11. doi:10.4103/2152-7806.125858
  • 14 Kono K, Shintani A, Okada H, Terada T. Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model. Neurol Med Chir (Tokyo). 2013;53(5):347-51. doi:10.2176/nmc.53.347
  • 15 Sugiu K, Martin JB, Jean B, Gailloud P, Mandai S, Rufenacht DA. Artificial cerebral aneurysm model for medical testing, training, and research. Neurol Med Chir (Tokyo). 2003;43(2):69-72. doi:10.2176/nmc.43.69
  • 16 Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF, Dietz UA et al. Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir Bras. 2013;28(11):756-61. doi:10.1590/S0102-86502013001100002
  • 17 Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18(3):294-306. doi:10.1177/1553350610395031
  • 18 Ohta M, Hirabayashi M, Wetzel S, Lylyk P, Wata H, Tsutsumi S et al. Impact of stent design on intra-aneurysmal flow: a computer simulation study. Interv Neuroradiol. 2004;10(2 Suppl):85-94. doi:10.1177/15910199040100S216