Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2020-0595
Longitudinal whole-brain analysis of multi-subject diffusion data in diffuse axonal injury
Análise longitudinal do encéfalo por tensor de difusão em lesão axonal difusaABSTRACT
Background: Diffuse axonal injury occurs with high acceleration and deceleration forces in traumatic brain injury (TBI). This lesion leads to disarrangement of the neuronal network, which can result in some degree of deficiency. The Extended Glasgow Outcome Scale (GOS-E) is the primary outcome instrument for the evaluation of TBI victims. Diffusion tensor imaging (DTI) assesses white matter (WM) microstructure based on the displacement distribution of water molecules. Objective: To investigate WM microstructure within the first year after TBI using DTI, the patient’s clinical outcomes, and associations. Methods: We scanned 20 moderate and severe TBI victims at 2 months and 1 year after the event. Imaging processing was done with the FMRIB software library; we used the tract-based spatial statistics software yielding fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) for statistical analyses. We computed the average difference between the two measures across subjects and performed a one-sample t-test and threshold-free cluster enhancement, using a corrected p-value < 0.05. Clinical outcomes were evaluated with the GOS-E. We tested for associations between outcome measures and significant mean FA clusters. Results: Significant clusters of altered FA were identified anatomically using the JHU WM atlas. We found increasing spotted areas of FA with time in the right brain hemisphere and left cerebellum. Extensive regions of increased MD, RD, and AD were observed. Patients presented an excellent overall recovery. Conclusions: There were no associations between FA and outcome scores, but we cannot exclude the existence of a small to moderate association.
RESUMO
Antecedentes: A lesão axonial difusa ocorre em traumas com alta energia de aceleração e desaceleração, determinando desorganização da microestrutura cerebral, levando a algum déficit. A escala de Glasgow Estendida (GOS-E) é indicada na avaliação clínica das vítimas de trauma cranioencefalico. Imagens por tensor de difusão (DTI) estudam a microestrutura cerebral a partir da difusão das moléculas de água. Objetivo: Investigar a microestrutura cerebral no primeiro ano após trauma, avaliar clinicamente os pacientes e testar para correlações entre estes resultados. Métodos: 20 vítimas de TCE moderado e grave foram avaliados 2 meses e 1 ano depois do trauma. O processamento foi feito usando o software FMRIB (FSL) e a análise estatística foi feita com tract-based spatial statistics software para extrair os parâmetros de DTI. Calculamos a diferença da média entre as duas observações de cada sujeito e fizemos um teste-t para uma amostra e threshold-free cluster enhancement. Realizamos correções para múltiplas comparações e determinamos o valor de p < 0.05 como significativo. Um ano após o trauma, a avaliação clínica foi feita usando a GOS-E. Testamos para associações entre os resultados clínicos e os valores médios de FA dos clusters. Resultados: Os clusters significativos foram identificados usando o atlas JHU WM. Observamos aumento de FA predominantemente no hemisfério cerebral direito e cerebelar à esquerda e também extensas áreas de aumento nos demais parâmetros de DTI. A recuperação dos pacientes foi satisfatória. Conclusões: Não encontramos associações entre os resultados, no entanto alguma associação pequena a moderada não pode ser excluída.
Keywords:
Craniocerebral Trauma - Diffuse Axonal Injury - Diffusion Tensor Imaging - Glasgow Outcome Scale - RegenerationPalavras-chave:
Traumatismos Craniocerebrais - Lesão Axonal Difusa - Imagem de Tensor de Difusão - Escala de Resultado de Glasgow - RegeneraçãoAuthors’ contributions:
MCGO, CCL, VMPG, WSP: contributions for the design of the work; ALZ, FSF, FBCM, VMPG: contributions in the collection of data; DCG, CSA: contributions in the analysis of data; All authors: contributions in the writing, critical revision and final approval.
Support
Grants 2015/18136-1, 2016/05547-6 and 2017/17065-9 from São Paulo Research Foundation - FAPESP.
Publication History
Received: 07 February 2021
Accepted: 30 May 2021
Article published online:
30 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
REFERENCES
- 1 Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 1989; 15 (01) 49-59 https://doi.org/10.1111/j.1365-2559.1989.tb03040.x
- 2 Esbjörnsson E, Skoglund T, Sunnerhagen KS. Fatigue, psychosocial adaptation and quality of life one year after traumatic brain injury and suspected traumatic axonal injury; evaluations of patients and relatives: a pilot study. J Rehabil Med 2013; 45 (08) 771-777 https://doi.org/10.2340/16501977-1170
- 3 Vieira RCA, Paiva WS, de Oliveira DV, Teixeira MJ, de Andrade AF, de Sousa RMC. Diffuse axonal injury: epidemiology, outcome and associated risk factors. Front Neurol 2016; 7: 178 https://doi.org/10.3389/fneur.2016.00178
- 4 Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet 1975; 1 7905 480-484 https://doi.org/10.1016/S0140-6736(75)92830-5
- 5 Wilde EA, Whiteneck GG, Bogner J, Bushnik T, Cifu DX, Dikmen S. et al. Recommendations for the use of common outcome measures in traumatic brain injury research. Arch Phys Med Rehabil 2010; 91 (11) 1650-1660 e17 https://doi.org/10.1016/j.apmr.2010.06.033
- 6 Jennett B, Snoek J, Bond MR, Brooks N. Disability after severe head injury: observations on the use of the Glasgow Outcome Scale. J Neurol Neurosurg Psychiatry 1981; 44 (04) 285-293 https://doi.org/10.1136/jnnp.44.4.285
- 7 Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol 2013; 246: 35-43 https://doi.org/10.1016/j.expneurol.2012.01.013
- 8 Bramlett HM, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 2015; 32 (23) 1834-1848 https://doi.org/10.1089/neu.2014.3352
- 9 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl. 01) S208-S219 https://doi.org/10.1016/j.neuroimage.2004.07.051
- 10 Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 2013; 34 (11) 2064-2074 https://doi.org/10.3174/ajnr.A3395
- 11 Su E, Bell M, Diffuse axonal injury. Laskowitz D, Grant G. Translational research in traumatic brain injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2016. Chapter 3 https://www.ncbi.nlm.nih.gov/books/NBK326722/
- 12 Garin-Muga A, Borro D. Review and challenges of brain analysis through DTI measurements. Stud Health Technol Inform 2014; 207: 27-36 https://doi.org/10.3233/978-1-61499-474-9-27
- 13 Lipton ML, Gellella E, Lo C, Gold T, Ardekani BA, Shifteh K. et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disbility: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma 2008; 25 (11) 1335-1342 https://doi.org/10.1089/neu.2008.0547
- 14 Chu Z, Wilde EA, Hunter JV, Mccauley SR, Bigler ED, Troyanskaya M. et al. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am J Neuroradiol 2010; 31 (02) 340-346 https://doi.org/10.3174/ajnr.A1806
- 15 Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5 (02) 143-156 https://doi.org/10.1016/s1361-8415(01)00036-6
- 16 Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 2009; 61 (06) 1336-1349 https://doi.org/10.1002/mrm.21890
- 17 Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Int Soc Magn Reson Med 2009; 17 (02) 3537
- 18 Smith SM, Jenkinson M, Johansen-berg H, Rueckert D, Nichols TE, Mackay CE. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31 (04) 1487-1505 https://doi.org/10.1016/j.neuroimage.2006.02.024
- 19 Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009; 44 (01) 83-98 https://doi.org/10.1016/j.neuroimage.2008.03.061
- 20 Wallace EJ, Mathias JL, Ward L. Relationship between diffusion tensor imaging findings and cognitive outcomes following adult traumatic brain injury: a meta-analysis. Neurosci Biobehav Rev 2018; 92: 93-103 https://doi.org/10.1016/j.neubiorev.2018.05.023
- 21 O’Phelan KH, Otoshi CK, Ernst T, Chang L. Common patterns of regional brain injury detectable by diffusion tensor imaging in otherwise normal-appearing white matter in patients with early moderate to severe traumatic brain injury. J Neurotrauma 2018; 35 (05) 739-749 https://doi.org/10.1089/neu.2016.4944
- 22 Leon AMC, Cicuendez M, Navarro B, Munarriz PM, Cepeda S, Paredes I. et al. What can we learn from diffusion tensor imaging from a large traumatic brain injury cohort?: white matter integrity and its relationship with outcome. J Neurotrauma 2018; 35 (20) 2365-2376 https://doi.org/10.1089/neu.2018.5691
- 23 Sullivan GM, Mierzwa AJ, Kijpaisalratana N, Tang H, Wang Y, Song S-K. et al. Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum. J Neuropath Exp Neurol 2013; 72 (12) 1106-1125 https://doi.org/10.1097/NEN.20200595202005950009
- 24 Tu T-W, Williams RA, Lescher JD, Jikaria N, Turtzo LC, Frank JA. Radiological-pathological correlation of diffusion tensor and magnetization transfer imaging in closed head traumatic brain injury model. Ann Neurol 2016; 79 (06) 907-920 https://doi.org/10.1002/ana.24641
- 25 Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A. et al. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. Neuroimage 2001; 13 (06) 1174-1185 https://doi.org/10.1006/nimg.2001.0765
- 26 Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17 (03) 1429-1436 https://doi.org/10.1006/nimg.2002.1267
- 27 Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 2015; 32 (23) 1861-1882 https://doi.org/10.1089/neu.2014.3680
- 28 Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E. et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 2011; 232 (02) 280-289 https://doi.org/10.1016/j.expneurol.2011.09.018
- 29 Hutchinson EB, Schwerin SC, Avram AV, Juliano SL, Pierpaoli C. Diffusion MRI and the detection of alterations following traumatic brain injury. J Neurosci Res 2018; 96 (04) 612-625 https://doi.org/10.1002/jnr.24065
- 30 Genc S, Anderson V, Ryan NP, Malpas CB, Catroppa C, Beauchamp M. et al. Recovery of white matter following paediatric traumatic brain injury depends on injury severity. J Neurotrauma 2017; 34 (04) 798-806 https://doi.org/10.1089/neu.2016.4584
- 31 Harris NG, Verley DR, Gutman BA, Sutton RL. Bi-directional changes in fractional anisotropy after experiment TBI: disorganization and reorganization?. Neuroimage 2016; 133: 129-143 https://doi.org/10.1016/j.neuroimage.2016.03.012
- 32 Caeyenberghs K, Wenderoth N, Smits-Engelsman BCM, Sunaert S, Swinnen SP. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain 2009; 132 (03) 684-694 https://doi.org/10.1093/brain/awn344
- 33 Sullivan GM, Feinn R. Using effect size - or why the P value is not enough. J Grad Med Educ 2012; 4 (03) 279-282 https://doi.org/10.4300/JGME-D-12-00156.1
- 34 Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT. et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 2008; 25 (07) 719-738 https://doi.org/10.1089/neu.2008.0586
- 35 Brown AW, Leibson CL, Mandrekar J, Ransom JE, Malec JF. Long-term survival after traumatic brain injury: a population-based analysis controlled for nonhead trauma. J Head Trauma Rehabil 2014; 29 (01) E1-E8 https://doi.org/10.1097/HTR.0b013e318280d3e6
- 36 Grassi DC, Conceicção DMD, Leite CC, Andrade CS. Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury. Arq Neuropsiquiatr 2018; 76 (03) 189-199 https://doi.org/10.1590/0004-282X20180007