Yearb Med Inform 2016; 25(S 01): S103-S116
DOI: 10.15265/IYS-2016-s034
Original Article
Georg Thieme Verlag KG Stuttgart

Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision

B. Middleton
1   Apervita, Inc., Chicago, IL, USA
2   Harvard T.H. Chan School of Public Health , Boston, MA, USA
,
D. F. Sittig
3   University of Texas Health Science Center at Houston, TX, USA
,
A. Wright
4   Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

02 August 2016

Publication Date:
06 March 2018 (online)

Summary

Objective: The objective of this review is to summarize the state of the art of clinical decision support (CDS) circa 1990, review progress in the 25 year interval from that time, and provide a vision of what CDS might look like 25 years hence, or circa 2040. Method: Informal review of the medical literature with iterative review and discussion among the authors to arrive at six axes (data, knowledge, inference, architecture and technology, implementation and integration, and users) to frame the review and discussion of selected barriers and facilitators to the effective use of CDS.

Result: In each of the six axes, significant progress has been made. Key advances in structuring and encoding standardized data with an increased availability of data, development of knowledge bases for CDS, and improvement of capabilities to share knowledge artifacts, explosion of methods analyzing and inferring from clinical data, evolution of information technologies and architectures to facilitate the broad application of CDS, improvement of methods to implement CDS and integrate CDS into the clinical workflow, and increasing sophistication of the end-user, all have played a role in improving the effective use of CDS in healthcare delivery.

Conclusion: CDS has evolved dramatically over the past 25 years and will likely evolve just as dramatically or more so over the next 25 years. Increasingly, the clinical encounter between a clinician and a patient will be supported by a wide variety of cognitive aides to support diagnosis, treatment, care-coordination, surveillance and prevention, and health maintenance or wellness.

 
  • References

  • 1 Osheroff JA, Teich JM, Levick DL, Saldana L, Velasco FT, Sittig DF. et al. Improving Outcomes with Clinical Decision Support: An Implementer’s Guide. 2nd ed. Healthcare Information and Management Systems Society; Chicago, IL: 2012
  • 2 Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc 2007; 14: 141-5.
  • 3 Henry SB, Lenert L, Middleton B, Partridge R. Linking process and outcome with an integrated clinical information management system. Proc HIMSS 1993; 7: 81-93.
  • 4 Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health system. Sci Transl Med 2010; 2: 1-3.
  • 5 Etheredge LM. A rapid-learning health system. Health Aff (Millwood) 2007; 26: w107-18.
  • 6 Kohane IS, Drazen JM, Campion EW. A Glimpse of the Next 100 Years in Medicine. N Eng J Med 2012; 367: 2538-9.
  • 7 Maviglia SM, Kuperman GJ, Middleton B. Hospital Information Systems, Hospital Medicine. Philadelphia: Lippincott; 2005
  • 8 Barnett GO, Justice NS, Somand ME, Adams JB, Waxman BD, Beaman PD. et al. COSTAR; A computer-based medical information system for ambulatory care. Proc IEEE 1979; 67: 1226-37.
  • 9 McDonald CJ, Murray R, Jeris D, Bhargava B, Seeger J, Blevins L. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health 1977; 67: 240-5.
  • 10 Middleton B, Renner K, Leavitt M. Ambulatory practice clinical information management: problems and prospects. Proc HIMSS 1997; 11: 97-112.
  • 11 McDonald CJ, Overhage JM, Tierney WM, Dexter PR, Martin DK, Suico JG. et al. The Regenstrief Medical Record System: a quarter century experience. Int J Med Inform 1999; 54: 225-53.
  • 12 Brown SH, Lincoln MJ, Groen PJ, Kolodner RM. VistA--U.S. Department of Veterans Affairs national-scale HIS. Int J Med Inform 2003; 69: 135-56.
  • 13 Sittig DF, Pace NL, Gardner RM, Beck E, Morris AH. Implementation of a computerized patient advice system using the HELP clinical information system. Comp Biomed Res 1989; 22: 474-87.
  • 14 Evans RS, Pestotnik SL, Classen DC, Clemmer TP, Weaver LK, J.F. Orme JF. et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Eng J Med 1998; 338: 232-8.
  • 15 Teich JM, Glaser JP, Beckley RF, Aranow M, Bates DW, G.J. Kuperman GJ. et al. The Brigham integrated computing system (BICS): advanced clinical systems in an academic hospital environment. Int J Med Inform 1999; 54: 197-208.
  • 16 Davides C. Health Care Information Technology Family Tree: Healthcare Technology Consolidation 1992-2014. HISTALK2.com/histalk. com/download/HCIT_ConsolidationChart.pdf Accessed February 12, 2016
  • 17 Bates DW, Teich JM, Lee J, Seger D, Kuperman GJ, Ma’Luf N. et al. The impact of computerized physician order entry on medication error prevention. J Am Med Inform Assoc 1999; 6: 313-21.
  • 18 Nielsen AL, Henriksen DP, Marinakis C, Hellebek A, Birn H, Nybo M. et al. Drug dosing in patients with renal insufficiency in a hospital setting using electronic prescribing and automated reporting of estimated glomerular filtration rate. Basic Clin Pharmacol Toxicol 2014; 114: 407-13.
  • 19 Lehmann CU, Conner KG, Cox JM. Preventing provider errors: online total parenteral nutrition calculator. Pediatrics 2004; 748-53.
  • 20 Sittig DF, Gardner RM, Morris AH, Wallace CJ. Clinical evaluation of computer-based respiratory care algorithms. Int J Clin Monit Comput 1990; 7: 177-85.
  • 21 Rennels GD, Shortliffe EH, Stockdale FE, Miller PL. A computational model of reasoning from the clinical literature. Comput Methods Programs Biomed 1987; 24: 139-49.
  • 22 Kuperman GJ, Teich JM, Bates DW, Hiltz FL, Hurley JM, Lee RY. et al. Detecting alerts, notifying the physician, and offering action items: a comprehensive alerting system. Proc AMIA Annu Fall Symp 1996; 704-8.
  • 23 Samal L, Stavroudis TA, Lehmann CU, Miller RE, Lehmann H. Effect of a laboratory result pager on provider behavior in a neonatal intensive care unit. Proc AMIA Annu Fall Symp 2008; 1121
  • 24 Hibbs SP, Nielsen ND, Brunskill S, Doree C, Yazer MH, Kaufman RM. et al. The impact of electronic decision support on transfusion practice: a systematic review. Transfus Med Rev 2015; 29: 14-23.
  • 25 Manrique-Rodríguez S, Sánchez-Galindo A, Fernández-Llamazares CM, López-Herce J, Echarri-Martínez L, Escudero-Vilaplana V. et al. Smart pump alerts: all that glitters is not gold. Int J Med Inform 2012; 81: 344-50.
  • 26 Ricciardi TN, Masarie FE, Middleton B. Clinical benchmarking enabled by the digital health record. Stud Health Technol Inform 2001; 84: 675-9.
  • 27 Schmidt R, Geisler S, Spreckelsen C. Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources. BMC Med Inform Decis Mak 2013; 13: 3
  • 28 Michael Fitzmaurice J. Three Decades of Research on Computer Applications in Health Care: Medical Informatics Support at the Agency for Healthcare Research and Quality. J Am Med Inform Assoc 2002; 9: 144-60.
  • 29 Tang PC, LaRosa MP, Gorden SM. Use of computer-based records, completeness of documentation, and appropriateness of documented clinical decisions. J Am Med Inform Assoc 1999; 6: 245-51.
  • 30 Embi PJ, Yackel TR, Logan JR, Bowen JL, Cooney TG, P.N. Gorman PN. Impacts of computerized physician documentation in a teaching hospital: perceptions of faculty and resident physicians. J Am Med Inform Assoc 2004; 11: 300-9.
  • 31 Bankowitz RA, McNeil MA, Challinor SM, Parker RC, Kapoor WN, Miller RA. A computer-assisted medical diagnostic consultation service. Implementation and prospective evaluation of a prototype. Ann Intern Med 1989; 110: 824-32.
  • 32 First MB, Soffer LJ, Miller RA. QUICK (QUick Index to Caduceus Knowledge): Using the Internist-1/Caduceus knowledge base as an electronic textbook of medicine. Comp Biomed Res 1985; 18: 137-65.
  • 33 Rennels GD, Shortliffe EH, Stockdale FE, Miller PL. A Computational Model of Reasoning from the Clinical Literature. AI Magazine 1989; 10: 49.
  • 34 Miller RA Medical diagnostic decision support systems--past, present, and future: a threaded bibliography and brief commentary. J Am Med Inform Assoc 1994; 1: 8-27
  • 35 Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L. et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc 2003; 10: 523-30.
  • 36 Mitchell E, Sullivan F. A descriptive feast but an evaluative famine: systematic review of published articles on primary care computing during 1980-97. BMJ 2001; 322: 279-82.
  • 37 Liu J, Wyatt JC, Altman DG. Decision tools in health care: focus on the problem, not the solution. BMC Med Inform Decis Mak 2006; 6: 4
  • 38 Wyatt JC, Wyatt SM. When and how to evaluate health information systems?. Int J Med Inform 2003; 69: 251-9.
  • 39 Linder JA, Schnipper JL, Tsurikova R, Melnikas AJ, Volk LA, Middleton B. Barriers to electronic health record use during patient visits. Proc AMIA Annu Fall Symp 2006; 499-503.
  • 40 Heathfield H, Pitty D, Hanka R. Evaluating information technology in health care: barriers and challenges. BMJ 1998; 316: 1959-61.
  • 41 Poon EG, Blumenthal D, Jaggi T, Honour MM, Bates DW, Kaushal R. Overcoming the barriers to the implementing computerized physician order entry systems in US hospitals: perspectives from senior management. Proc AMIA Annu Fall Symp 2003: 975.
  • 42 Kizer KW, Fonseca ML, Long LM. The veterans healthcare system.. preparing for the twenty-first century. Hosp Health Serv Adm 1997; 42: 283-98.
  • 43 Middleton B. Accelerating U. S. EHR Adoption: How to Get There From Here. Recommendations Based on the 2004 ACMI Retreat. J Am Med Inform Assoc 2004; 12: 13-9.
  • 44 Masarie FE, Miller RA, Bouhaddou O, Giuse NB, Warner HR. An interlingua for electronic interchange of medical information.. Using frames to map between clinical vocabularies. Comp Biomed Res 1991; 24: 379-400.
  • 45 Haux R. Health information systems - past, present, future. Int J Med Inform 2006; 75: 268-81.
  • 46 Elkin PL, Peleg M, Lacson R, Bernstam E, Tu S, Boxwala A. et al. Toward the standardization of electronic guidelines. JAMA 2000; 17: 39-44.
  • 47 Sonnenberg FA, Hagerty CG. Computer-interpretable clinical practice guidelines. Where are we and where are we going ? Yearb Med Inform 2006; 145-58.
  • 48 Miller RA. Computer-assisted diagnostic decision support: history, challenges, and possible paths forward. Adv Health Sci Educ Theory Pract 2009;14 Suppl 1 89-106.
  • 49 Chertow GM, Lee J, Kuperman GJ, Burdick E, Horsky J, Seger DL. et al. Guided medication dosing for inpatients with renal insufficiency. JAMA 2001; 286: 2839-44.
  • 50 Lorenzi N, Bloomrosen M. Accelerating the deployment of a health information technology and informatics workforce through education, training, research, and evaluation. Stud Health Technol Inform 2011; 170: 113-21.
  • 51 Kulikowski CA, Shortliffe EH, Currie LM, Elkin PL, Hunter LE, Johnson TR. et al. AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. J Am Med Inform Assoc 2012; 19: 931-8.
  • 52 Vedel I, Lapointe L, Lussier M-T, Richard C, Goudreau J, Lalonde L. et al. Healthcare professionals’ adoption and use of a clinical information system (CIS) in primary care: Insights from the Da Vinci study. Int J Med Inform 2012; 81: 73-87.
  • 53 Institute of Medicine, Health IT and Patient Safety: Building Safer Systems for Better Care. Washington D.C: The National Academies Press; Washington; year?.
  • 54 Middleton B. Achieving U. S. Health information technology adoption: the need for a third hand. Health Aff (Milwood) 2005; 24: 1269-72.
  • 55 Blumenthal D, Glaser JP. Information technology comes to medicine. N Eng J Med 2007; 356: 2527-34.
  • 56 Blumenthal D. Launching HITECH. N Eng J Med 2010; 362: 382-5.
  • 57 Adler-Milstein J, DesRoches CM, Furukawa MF, Worzala C, Charles D, Kralovec P. et al. More than half of US hospitals have at least a basic EHR, but stage 2 criteria remain challenging for most. Health Aff (Millwood) 2014; 33: 1664-71.
  • 58 Nakamura MM, Harper MB, Castro AV, Yu FB, Jha AK. Impact of the meaningful use incentive program on electronic health record adoption by US children’s hospitals. J Am Med Inform Assoc 2015; 22: 390-8.
  • 59 Hing EF, Yang NF, Jamoon EW. Adoption of Certified Electronic Health Record Systems and Electronic Information Sharing in Physician Offices: United States, 2013 and 2014. NCHS Data Brief 2016; 1-8.
  • 60 Jha AK. Meaningful use of electronic health records: the road ahead. JAMA 2010; 304: 1709-10.
  • 61 Blumenthal D, Tavenner M. The “meaningful use” regulation for electronic health records. N Eng J Med 2010; 363: 504.
  • 62 Grant RW, Wald JS, Schnipper JL, Gandhi TK, Poon EG, Orav EJ. et al. Practice-linked online personal health records for type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2008; 168: 1776-82.
  • 63 Institute of Medicine (US) Committee on Quality of Health Care in America. Kohn LT, Corrigan JM, Donaldson MS. editors. To Err is Human: Building a Safer Health System. Washington (DC): National Academies Press (US); 2000
  • 64 Institute of Medicine (US) Committee on Quality of Health Care in America.. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington (DC): National Academies Press (US); 2001
  • 65 Stead WW, Searle JR, Fessler HE, Smith JW, Shortliffe EH. Biomedical informatics: changing what physicians need to know and how they learn. Acad Med 2011; 86: 429-34.
  • 66 Miller BM, Moore DE, Stead WW, Balser JR. Beyond Flexner: a new model for continuous learning in the health professions. Acad Med 2010; 85: 266-72.
  • 67 Institute of Medicine (US), National Academy of Engineering (US). Roundtable on Value & Science-Driven Health Care. Engineering a Learning Healthcare System 2011
  • 68 McDonald KM, Matesic B, Contopoulos-Ioannidis DG, Lonhart J, Schmidt E, Pineda N. et al. Patient safety strategies targeted at diagnostic errors: a systematic review. Ann Intern Med 2013; 158: 381-9.
  • 69 Schiff GD, Bates DW. Can electronic clinical documentation help prevent diagnostic errors?. N Eng J Med 2010; 362: 1066-9.
  • 70 Graber ML, Kissam S, Payne VL, Meyer AND, Sorensen A, Lenfestey N. et al. Cognitive interventions to reduce diagnostic error: a narrative review. BMJ Quality & Safety 2012; 21: 535-57.
  • 71 Singh H, Thomas EJ, Mani S, Sittig D, Arora H, Espadas D. et al. Timely follow-up of abnormal diagnostic imaging test results in an outpatient setting: are electronic medical records achieving their potential?. Arch Intern Med 2009; 169: 1578-86.
  • 72 Fleming NS, Culler SD, McCorkle R, Becker ER, Ballard DJ. The financial and nonfinancial costs of implementing electronic health records in primary care practices. Health Aff (Milwood) 2001; 30: 481-9.
  • 73 Rea S, Pathak J, Savova G, Oniki TA, Westberg L, Beebe CE. et al. Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. J Biomed Inform 2012; 45: 763-71.
  • 74 Iezzoni LI. Assessing quality using administrative data. Ann Intern Med 1997; 127: 666-74.
  • 75 Shortell SM, Rundall TG, Hsu J. Improving patient care by linking evidence-based medicine and evidence-based management. JAMA 2007; 298: 673-6.
  • 76 Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H. et al. Clinical decision support systems for the practice of evidence-based medicine. J Am Med Inform Assoc 2001; 8: 527-34.
  • 77 Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE--An integrated standards-based translational research informatics platform. Proc AMIA Annu Fall Symp 2009; 391-5.
  • 78 D’Avolio LW, Farwell WR, Fiore LD. Comparative effectiveness research and medical informatics. Am J Med 2010; 123: e32-7.
  • 79 Klann JG, Buck MD, Brown J, Hadley M, El-more R, Weber GM. et al. Query Health: standards-based, cross-platform population health surveillance. J Am Med Inform Assoc 2014; 21: 650-6.
  • 80 Frankovich J, Longhurst CA, Sutherland SM. Evidence-Based Medicine in the EMR Era. N Eng J Med 2011; 365: 1758-9.
  • 81 Klann JG, Mendis M, Phillips LC, Goodson AP, Rocha BH, Goldberg HS. et al. Taking advantage of continuity of care documents to populate a research repository. J Am Med Inform Assoc 2015; 22: 370-9.
  • 82 Rasmussen LV, Kiefer RC, Mo H, Speltz P, Thompson WK, Jiang G. et al. A Modular Architecture for Electronic Health Record-Driven Phenotyping. AMIA Jt Summits Transl Sci Proc 2015; 147-51.
  • 83 Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical decision support capabilities of commercially-available clinical information systems. J Am Med Inform Assoc 16: 637-44.
  • 84 Sittig DF, Wright A, Meltzer S, Simonaitis L, Evans RS, Nichol WP. et al. Comparison of clinical knowledge management capabilities of commercially-available and leading internally-developed electronic health records. BMC Med Inform Decis Mak 2011; 11: 13.
  • 85 Boxwala AA, Kim J, Grillo JM, Ohno-Machado L. Using statistical and machine learning to help institutions detect suspicious access to electronic health records. J Am Med Inform Assoc 2011; 18: 498-505.
  • 86 Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 255-60.
  • 87 Wright A, McCoy A, Henkin S, Flaherty M, Sittig D. Validation of an association rule mining-based method to infer associations between medications and problems. Appl Clin Inform 2013; 4: 100-9.
  • 88 Lee J, Maslove DM, Dubin JA. Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PLoS One 2015; 10: e0127428.
  • 89 Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012; 13: 395-405.
  • 90 Simpao AF, Ahumada LM, Gálvez JA, Rehman MA. A review of analytics and clinical informatics in health care. J Med Syst 2014; 38: 45-7.
  • 91 Natter MD, Quan J, Ortiz DM, Bousvaros A, Ilowite NT, Inman CJ. et al. An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 2013; 20: 172-9
  • 92 Goldberg HS, Paterno MD, Rocha BH, Schaeffer M, Wright A, Erickson JL. et al. A highly scalable, interoperable clinical decision support service. J Am Med Inform Assoc 2014; 21: e55-62.
  • 93 Kawamoto K, Lobach DF. Proposal for fulfilling strategic objectives of the U.S. Roadmap for national action on clinical decision support through a service-oriented architecture leveraging HL7 services. J Am Med Inform Assoc 2007; 14: 146-55.
  • 94 Wright A, Sittig DF. SANDS.. A service-oriented architecture for clinical decision support in a National Health Information Network. J Biomed Inform 2008; 41: 962-81.
  • 95 Ohno-Machado L. Big science, big data, and a big role for biomedical informatics. J Am Med Inform Assoc 2012; 19: e1-e1.
  • 96 Komaroff AL. The variability and inaccuracy of medical data. Proc IEEE 1979; 67: 1196-207.
  • 97 Harrison MI, Koppel R, Bar-Lev S. Unintended consequences of information technologies in health care--an interactive sociotechnical analysis. J Am Med Inform Assoc 2007; 14: 542-9.
  • 98 Ash JS, Sittig DF, Campbell EM, Guappone KP, Dykstra RH. Some unintended consequences of clinical decision support systems. Proc AMIA Annu Fall Symp 2007; 26-30.
  • 99 Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. J Am Med Inform Assoc 2004; 11: 104-12.
  • 100 Crowe B. Association of Medical Directors of Information Systems consensus on inpatient electronic health record documentation. Appl Clin Inform 2013; 4: 293-303.
  • 101 Kuhn T, Basch P, Barr M, Yackel T. Medical Informatics Committee of the American College of Physicians, Clinical documentation in the 21st century: executive summary of a policy position paper from the American College of Physicians. Ann Intern Med 2015; 162: 301-3.
  • 102 Hirschtick RE. Copy-and-Paste. JAMA 2006; 295: 2335-6.
  • 103 Coiera E, Aarts J, Kulikowski C. The dangerous decade. J Am Med Inform Assoc 2012; 19: 2-5.
  • 104 Chute C, Beck S, Fisk T. The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data. J Am Med Inform Assoc 2010; 17: 131-5.
  • 105 Einbinder JS, Bates DW. Leveraging information technology to improve quality and safety. Yearb Med Inform 2007; 22-9.
  • 106 Hoy MB. Personal Activity Trackers and the Quantified Self. Med Ref Serv Q 2016; 35: 94-100.
  • 107 Swan M. Health 2050: The Realization of Personalized Medicine through Crowdsourcing, the Quantified Self, and the Participatory Biocitizen. J Pers Med 2012; 2: 93-118.
  • 108 Zai AH, Ronquillo JG, Nieves R, Chueh HC, Kvedar JC, Jethwani K. Assessing hospital readmission risk factors in heart failure patients enrolled in a telemonitoring program. Int J Telemed Appl 2013; 2013: 305819.
  • 109 Clark RA, Inglis SC, McAlister FA, Cleland JGF, Stewart S. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ 2007; 334: 942.
  • 110 Barabási A-L.. Network medicine--from obesity to the “diseasome”. N Eng J Med 2007; 357: 404-7.
  • 111 Ohmann C, Kuchinke W. Future developments of medical informatics from the viewpoint of networked clinical research. Interoperability and integration. Methods Inf Med 2009; 48: 45-54.
  • 112 Yasnoff WA, Humphreys BL, Overhage JM, Detmer DE, Brennan PF, Morris RW. et al. A consensus action agenda for achieving the national health information infrastructure. J Am Med Inform Assoc 2004; 11 (Suppl. 04) 332-8.
  • 113 Walker J, Pan E, Johnston D, Adler-Milstein J, Bates DW, Middleton B. The value of health care information exchange and interoperability. Health Aff (Milwood) 2005 Suppl Web Exclusives W5–10–W5–18.
  • 114 Dolin RH, Alschuler L, Beebe C, Biron PV, Boyer SL, Essin D. et al. The HL7 Clinical Document Architecture. J Am Med Inform Assoc 2001; 8: 552-69.
  • 115 Weber GM. Federated queries of clinical data repositories: the sum of the parts does not equal the whole. J Am Med Inform Assoc 2013; 20: e155-e161.
  • 116 Mandl KD, Kohane IS. Federalist principles for healthcare data networks. Nature Publishing Group 2015; 33: 360-3.
  • 117 Ferranti JM, Musser RC, Kawamoto K, Hammond WE. The clinical document architecture and the continuity of care record: a critical analysis. J Am Med Inform Assoc 2006; 13: 245-52.
  • 118 Kawamoto K, Shields D, McIntyre A, Strasberg H. Evaluation of HL7 Continuity of Care Document as the Foundation for an International Virtual Medical Record Standard for Clinical Decision Support. (7AD). http://wiki.hl7.org/images/d/d3/HL7vMR_CCD_Coverage_of_CDS_Data_Needs_v2011-03-17.pdf (accessed March 3, 2015).
  • 119 Johnson PD, Tu SW, Musen MA, Purves I. A virtual medical record for guideline-based decision support. Proc AMIA Symp 2001; 294-8.
  • 120 Marcos C, González-Ferrer A, Peleg M, Cavero C. Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. J Am Med Inform Assoc 2015; 22: 587-99.
  • 121 Ingram D, Beale T, Heard S, Kalra D, Lloyd D, Schloeffel P. Introducing OpenEHR. Openehr.org. http://www.openehr.org/releases/1.0/openEHR/introducing_openEHR.pdf (accessed June 18, 2016).
  • 122 Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In: 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2013. p. 326-31.
  • 123 Kasthurirathne SN, Mamlin B, Grieve G, Biondich P. Towards Standardized Patient Data Exchange: Integrating a FHIR Based API for the Open Medical Record System. Stud Health Technol Inform 2015; 216: 932.
  • 124 HL7 launches Argonaut Project to advance FHIR interoperability standard. Health Manag Technol 2015; 36: 26.
  • 125 Sittig DF, Hazlehurst BL, Brown J, Murphy S, Rosenman M, Tarczy-Hornoch P. et al. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data. Medical Care 2012; 50 Suppl: S49-59.
  • 126 Kuperman GJ, Gardner RM, Pryor TA. Decision Support on the HELP System. In: Computer-Assisted Medical Decision Making. New York, NY: Springer; 1991. p. 53-67.
  • 127 Perlin JB, Kolodner RM, Roswell RH. The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care. Am J Manag Care 2004; 10: 828-36.
  • 128 Shwe M, Sujansky W, Middleton B. Reuse of knowledge represented in the Arden syntax. Proc Annu Symp Comput Appl Med Care 1992; 47-51.
  • 129 Samwald M, Fehre K, de Bruin J, Adlassnig K-P. The Arden Syntax standard for clinical decision support: experiences and directions. J Biomed Inform 2012; 45: 711-8.
  • 130 Pryor TA, Hripcsak G. The arden syntax for medical logic modules. Int J Clin Monit Comput 1993; 10: 215-24.
  • 131 Sordo M, Boxwala AA, Ogunyemi O, Greenes RA. Description and status update on GELLO: a proposed standardized object-oriented expression language for clinical decision support. Stud Health Technol Inform 2004; 107: 164-8.
  • 132 McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R. et al. LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin Chem 2003; 49: 624-33.
  • 133 Freimuth RR, Wix K, Zhu Q, Siska M, Chute CG. Evaluation of RxNorm for Medication Clinical Decision Support. Proc AMIA Annu Fall Symp 2014; (2014) 554-63.
  • 134 Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D. et al. GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform 2004; 37: 147-61.
  • 135 Peleg M. Computer-interpretable clinical guidelines: a methodological review. J Biomed Inform 2013; 46: 744-63.
  • 136 Fox J, Johns N, Lyons C, Rahmanzadeh A, Thomson R, Wilson P. PROforma: a general technology for clinical decision support systems. Comput Methods Programs Biomed 1997; 54: 59-67.
  • 137 Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R. et al. A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J Biomed Inform 2004; 37: 325-44.
  • 138 Kawamoto K, Lobach DF. Design, implementation, use, and preliminary evaluation of SEBASTIAN, a standards-based Web service for clinical decision support. Proc AMIA Annu Fall Symp 2005; (2005) 380-384.
  • 139 Boxwala AA, Rocha BH, Maviglia S, Kashyap V, Meltzer S, Kim J. et al. A multi-layered framework for disseminating knowledge for computer-based decision support. J Am Med Inform Assoc 2011; 18 Suppl i132-9.
  • 140 Tu SW, Campbel JR, Glasgow J, Nyman MA, McClure R, McClay J. et al. The SAGE Guideline Model: achievements and overview. J Am Med Inform Assoc 2007; 14: 589-98.
  • 141 Greenes R, Bloomrosen M, Brown-Connolly NE, Curtis C, Detmer DE, Enberg R. et al. The morn-ingside initiative: collaborative development of a knowledge repository to accelerate adoption of clinical decision support. Open Med Inform J 2010; 4: 278-90.
  • 142 Peleg M, Tu S. Decision support, knowledge representation and management in medicine. Yearb Med Inform 2006; 72-80.
  • 143 The medical knowledge crisis and its solution through knowledge management. Openclinical.org.(n.d.). http://www.openclinical.org/docs/whitepaper.pdf (accessed June 19, 2016).
  • 144 Fox J, Gutenstein M, Khan O, South M, Thomson R. OpenClinical.net: A platform for creating and sharing knowledge and promoting best practice in healthcare. Computers in Industry 2015; 66: 63-72.
  • 145 Arel I, Rose DC, Karnowski TP. Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier]. IEEE Computational Intelligence Magazine 2010; 5: 13-8.
  • 146 Bellazzi R, Diomidous M, Sarkar IN, Takabayashi K, Ziegler A, McCray AT. Data analysis and data mining: current issues in biomedical informatics. Methods Inf Med 2011; 50: 536-44.
  • 147 Collins FS, Feero WG, Guttmacher AE. Genomic medicine--an updated primer. N Eng J Med 2010; 362: 2001-11.
  • 148 Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA 2014; 311: 2479-80.
  • 149 Li C. Personalized medicine - the promised land: are we there yet?. Clinical Genetics 2011; 79: 403-12.
  • 150 Mirnezami R, Nicholson J, Darzi A. Preparing for Precision Medicine. N Eng J Med 2012; 366: 489-91.
  • 151 Collins FS, Varmus H. A new initiative on precision medicine. N Eng J Med 2015; 372: 793-5.
  • 152 Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DX-plain. An evolving diagnostic decision-support system. JAMA 1987; 258: 67-74.
  • 153 Petro J. Watson, I presume. Health Manag Technol 2012; 33: 8-11.
  • 154 Vardell E, Moore M. Isabel, a clinical decision support system. Med Ref Serv Q 2011; 30: 158-66.
  • 155 Gordon CL, Weng C. Combining expert knowledge and knowledge automatically acquired from electronic data sources for continued ontology evaluation and improvement. J Biomed Inform 2015; 57: 42-52.
  • 156 Tu SW, Peleg M, Carini S, Bobak M, Ross J, Rubin D. et al. A practical method for transforming free-text eligibility criteria into computable criteria. J Biomed Inform 2011; 44: 239-50.
  • 157 Shortliffe EH. Computer Programs to Support Clinical Decision Making. JAMA 1987; 258: 61-6.
  • 158 Littlejohns P, Wyatt JC, Garvican L. Evaluating computerised health information systems: hard lessons still to be learnt. BMJ 2003; 326: 860-3.
  • 159 Berner ES. Clinical Decision Support Systems: State of the Art; 2009. p. 1-26. http://JAMIAoxfordjournals.org.ezp-prod1.hul.harvard.edu (accessed March 3, 2015)
  • 160 Wright A, DSittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical decision support capabilities of commercially-available clinical information systems. J Am Med Inform Assoc 2009; 16: 637-44.
  • 161 Sittig DF, Wright A, Osheroff JA, Middleton B, Teich JM, Ash JS. et al. Grand challenges in clinical decision support. J Biomed Inform 2008; 41: 387-92.
  • 162 Shiffman RN, Dixon J, Brandt C, Essaihi A, Hsiao A, Michel G. et al. The GuideLine Implementability Appraisal (GLIA): development of an instrument to identify obstacles to guideline implementation. BMC Med Inform Decis Mak 2005; 5: 23
  • 163 Hajizadeh N, Kashyap N, Michel G, Shiffman RN. GEM at 10: a decade’s experience with the Guideline Elements Model. Proc AMIA Annu Fall Symp 2011; (2011) 520-8.
  • 164 Kong G, Xu D. Clinical decision support systems: a review on knowledge representation and inference under uncertainties. Int J Intel Comp Sys 2008; 1: 159-67.
  • 165 Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R. et al. The coming of age of artificial intelligence in medicine. Artif Intell Med 2009; 46: 5-17.
  • 166 Miller RA, Pople HE, Myers JD. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Eng J Med 1982; 307: 468-76.
  • 167 Miller RA, McNeil MA, Challinor SM, Masarie FE, Myers JD. The INTERNIST-1/QUICK MEDICAL REFERENCE project--status report. West J Med 1986; 145: 816-22.
  • 168 Worley WE. Meditel: Computer Assisted Diagnosis. Ann Intern Med 1990; 112: 154.
  • 169 Berner ES, Webster GD, Shugerman AA, Jackson JR, Algina J, Baker AL. et al. Performance of four computer-based diagnostic systems. N Eng J Med 1994; 330: 1792-6.
  • 170 Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science 1959; 130: 9-21.
  • 171 Szolovits P, Pauker SG. Categorical and probabilistic reasoning in medical diagnosis. Artificial Intelligence 1978; 11: 115-44.
  • 172 Pauker SG, Kassirer JP. The threshold approach to clinical decision making. N Eng J Med 1980; 302: 1109-17.
  • 173 Pauker SG, Gorry GA, Kassirer JP, Schwartz WB. Towards the simulation of clinical cognition. Taking a present illness by computer. Am J Med 1976; 60: 981-96.
  • 174 De Dombal FT. Computer-aided decision support in acute abdominal pain, with special reference to the EC concerted action. Int J Biomed Comput 1990; 26: 183-8.
  • 175 De Dombal FT. Computer-aided decision support in clinical medicine. Int J Biomed Comput 1989; 24: 9-16.
  • 176 Shwe MA, Middleton B, Heckerman DE, Henrion M, Horvitz EJ, Lehmann HP. et al. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods Inf Med 1991; 30: 241-55.
  • 177 Middleton B, Shwe MA, Heckerman D, Henrion M, Horvitz E, Lehmann HP. et al. Probabilistic diagnosis using a reformulation of the INTER-NIST-1/QMR knowledge base. Part II: Evaluation of Diagnostic Performance. Methods Inf Med 1991; 4: 256-67.
  • 178 Pradhan M, Provan G, Middleton B, Henrion M. Knowledge engineering for large belief networks; 1994. p. 484-90.
  • 179 Van Allen EM, Wagle N, Levy MA. Clinical analysis and interpretation of cancer genome data. J Clin Oncol 2013; 31: 1825-33.
  • 180 Mancinelli L, Cronin M, Sadee W. Pharmacogenomics: The promise of personalized medicine. AAPS PharmSci 2000; 2: 29-41.
  • 181 Peterson JF, Bowton E, Field JR, Beller M, Mitchell J, Schildcrout J. et al. Electronic health record design and implementation for pharmacogenomics: a local perspective. Genet Med 2013; 15: 833-41.
  • 182 Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH. et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther 2012; 92: 87-95.
  • 183 Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP. et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation Circulation. 2007; 116: 2563-70.
  • 184 Robinson PN. Deep phenotyping for precision medicine. Hum Mutat 2012; 33: 777-80.
  • 185 National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease, Toward Precision Medicine. Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington (DC): National Academies Press (US); 2011
  • 186 Wright A, Sittig DF. A four-phase model of the evolution of clinical decision support architectures. Int J Med Inform 2008; 77: 641-9.
  • 187 Warner HR, Toronto AF, Veasey LG, Stephenson R. A mathematical approach to medical diagnosis: application to congenital heart disease.1961. MD Comput 1992; Jan-Feb 9 (Suppl. 01) 43-50.
  • 188 Bleich HL. Computer evaluation of acid-base disorders. Trans Assoc Am Physicians 1968; 81: 184-9.
  • 189 Miller RA, Masarie FE. The demise of the “Greek Oracle” model for medical diagnostic systems. Methods Inf Med 1990; 29: 1-2.
  • 190 Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comp Biomed Res 1973; 6: 544-60.
  • 191 Porter JF, Kingsland LC, Lindberg DA, Shah I, Benge JM, Hazelwood SE. et al. The AI/RHEUM knowledge-based computer consultant system in rheumatology. Performance in the diagnosis of 59 connective tissue disease patients from Japan. Arthritis Rheum 1988; 31: 219-26.
  • 192 Meyer AND, Payne VL, Meeks DW, Rao R, Singh H. Physicians’ diagnostic accuracy, confidence, and resource requests: a vignette study. JAMA Intern Med 2013; 173: 1952-8.
  • 193 Kuperman GJ, Gardner RM. T.A. PRYOR, HELP: a dynamic hospital information system. Springer-Verlag: 1991
  • 194 Kuperman GJ, Spurr C, Flammini S, Bates D, Glaser J. A clinical information systems strategy for a large integrated delivery network. Proc AMIA Symp 2000; 438-42.
  • 195 Payne TH, Hoey PJ, Nichol P, Lovis C. Preparation and use of preconstructed orders, order sets, and order menus in a computerized provider order entry system. J Am Med Inform Assoc 2003; 10: 322-9.
  • 196 Thompson TG, Brailer DJ. The Decade of Health Information Technology: Delivering Consumer-centric and Information-rich Health Care --Framework for Strategic Action. Washington, D.C.: 2004
  • 197 Seliger R. Hl7 CCOW - Clinical Context Object Workgroup. (Accessed Nov. 2, 2015). en.wikipedia.org/wiki/CCOW.
  • 198 Seliger R. Healthcare IT tipping point?. Health Manag Technol 2005; 26: 48-7.
  • 199 Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden Syntax. Comp Biomed Res 1994; 27: 291-324.
  • 200 Jenders RA, Hripcsak G, Sideli RV, DuMouchel W, Zhang H, Cimino JJ. et al. Medical decision support: experience with implementing the Arden Syntax at the Columbia-Presbyterian Medical Center. Proc Annu Symp Comput Appl Med Care 1995; 169-73.
  • 201 Ram P, Berg D, Tu S, Mansfield G, Ye Q, Abarbanel R. et al. Executing clinical practice guidelines using the SAGE execution engine. Stud Health Technol Inform 2004; 107: 251-5.
  • 202 Middleton B. The clinical decision support consortium. Stud Health Technol Inform 2009; 150: 26-30.
  • 203 Paterno MD, Maviglia SM, Ramelson HZ, Schaeffer M, Rocha BH, Hongsermeier T. et al. Creating shareable decision support services: an interdisciplinary challenge. AMIA Annu Symp Proc 2010 Nov 13 2010; 602-6. .
  • 204 Dixon BE, Simonaitis L, Goldberg HS, Paterno MD, Schaeffer M, Hongsermeier T. et al. A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif Intell Med 2013; 59: 45-53.
  • 205 Wright A, Sittig DF, Ash JS, Erickson JL, Hickman TT, Paterno M. et al. Lessons learned from implementing service-oriented clinical decision support at four sites: A qualitative study. Int J Med Inform 2015; 84: 901-11.
  • 206 Goldberg HS, Paterno MD, Grundmeier RW, Rocha BH, Hoffman JM, Tham E. et al. Use of a remote clinical decision support service for a multicenter trial to implement prediction rules for children with minor blunt head trauma. Int J Med Inform 2016; 87: 101-10.
  • 207 http://www.opencds.org/Opencds.org (accessed January 26, 2016).
  • 208 Peleg M, Shahar Y, Quaglini S. Making Health-care More Accessible, Better, Faster, and Cheaper: The MobiGuide Project. European Journal of ePractice 2013
  • 209 Quaglini S, Shahar Y, Peleg M, Miksch S, Napolitano C, Rigla M. et al. Supporting shared decision making within the MobiGuide project. AMIA Annu Symp Proc 2013 Nov 16 2013; 1175-84.
  • 210 Blobel B. Advanced and secure architectural EHR approaches. Int J Med Inform 2006; 75: 185-90.
  • 211 Mandl KD, Kohane IS. Escaping the EHR trap--the future of health IT. N Eng J Med 2012; 366: 2240-2.
  • 212 Mandl KD, Mandel JC, Murphy SN, Bernstam EV, Ramoni RL, Kreda DA. et al. The SMART Platform: early experience enabling substitutable applications for electronic health records. J Am Med Inform Assoc 2012; 19: 597-603.
  • 213 Mandl KD, Mandel JC, Kohane IS. Driving Innovation in Health Systems through an Apps-Based Information Economy. Cell Syst 2015; 1: 8-13.
  • 214 Wennberg JE. Unwarranted variations in health-care delivery: implications for academic medical centres. BMJ 2002; 325: 961-4.
  • 215 Westbrook JI, Coiera E, Dunsmuir WTM, Brown BM, Kelk N, Paoloni R. et al. The impact of interruptions on clinical task completion. Qual Saf Health Care 2010; 19: 284-9.
  • 216 Coiera E. The science of interruption. BMJ Qual Saf 2012; 21: 357-60.
  • 217 Wears RL, Berg M. Computer Technology and Clinical Work: Still Waiting for Godot. JAMA 2005; 293: 1261-3.
  • 218 Slight SP, Seger DL, Nanji KC, Cho I, Maniam N. Are we heeding the warning signs? Examining providers’ overrides of computerized drug-drug interaction alerts in primary care. PLoS One 2013 Dec 26 8 (Suppl. 12) e85071.
  • 219 Nanji KC, Slight SP, Seger DL, Cho I, Fiskio JM, Redden LM. et al. Overrides of medication-related clinical decision support alerts in outpatients. J Am Med Inform Assoc 2014; 21: 487-91.
  • 220 Bryant AD, Fletcher GS, Payne TH. Drug interaction alert override rates in the Meaningful Use era: no evidence of progress. Appl Clin Inform 2014; 5: 802-13.
  • 221 McDonald CJ. Protocol-based computer reminders, the quality of care and the non-perfectability of man. N Eng J Med 1976; 295: 1351-5.
  • 222 Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G. et al. Medication-related Clinical Decision Support in Computerized Provider Order Entry Systems: A Review. J Am Med Inform Assoc 2007; 14: 29-40.
  • 223 Maviglia SM, Yoon CS, Bates DW, Kuperman G. KnowledgeLink: impact of context-sensitive information retrieval on clinicians’ information needs. J Am Med Inform Assoc 2006; 13: 67-73.
  • 224 Del Fiol G, Huser V, Strasberg HR, Maviglia SM, Curtis C, Cimino JJ. Implementations of the HL7 Context-Aware Knowledge Retrieval (“Infobutton”) Standard: challenges, strengths, limitations, and uptake. J Biomed Inform 2012; 45: 726-35.
  • 225 Cimino JJ, Li J. Sharing infobuttons to resolve clinicians’ information needs. Proc AMIA Annu Fall Symp 2003: 815.
  • 226 Wright A, Sittig DF, Carpenter JD, Krall MA, Pang JE, Middleton B. Order sets in computerized physician order entry systems: an analysis of seven sites. Proc AMIA Annu Fall Symp 2010; (2010) 892-6.
  • 227 Wright A, Feblowitz JC, Pang JE, Carpenter JD, Krall MA, Middleton B. et al. Use of order sets in inpatient computerized provider order entry systems: a comparative analysis of usage patterns at seven sites. Int J Med Inform 2012; 81: 733-45.
  • 228 Zhou L, Gurjar R, Regier R, Morgan S, Meyer T, Aroy T. et al. A study on design and development of enterprise-wide concepts for clinical documentation templates. Proc AMIA Annu Fall Symp 2008: 1193.
  • 229 Whipple NN, Palchuk MB, Olsha-Yehiav M, Li Q, Middleton B. Supporting CMT and user customization in Clinical Documentation templates. Proc AMIA Annu Fall Symp 2007: 1153.
  • 230 Payne TH, Perkins M, Kalus R, Reilly D. The transition to electronic documentation on a teaching hospital medical service. Proc AMIA Annu Fall Symp 2006; (2006) 629-33.
  • 231 Lin HS, Stead WW. Computational Technology for Effective Health Care: Immediate Steps and Strategic Directions. Washington DC: National Academies Press; 2009
  • 232 Sittig DF, Wright A, Simonaitis L, Carpenter JD, Allen GO, Doebbeling BN. et al. The state of the art in clinical knowledge management: an inventory of tools and techniques. Int J Med Inform 2010; 79: 44-57.
  • 233 Glaser J, Hongsermeier T. Managing the Investment in Clinical Decision Support. In: Clinical Decision Support. Elsevier; 2014. p. 665-88.
  • 234 Goldman DS, Colecchi J, Hongsermeier TM, Maviglia SM. Knowledge management and content integration: a collaborative approach. Proc AMIA Annu Fall Symp 2008: 953.
  • 235 Zozus M, Hammond WE, Green BB, Kahn MG, Richesson RL, Rusincovitch SA. et al. Data Quality Assessment Recommendations for Secondary use of EHR Data. 2015
  • 236 Cusack CM, Hripcsak G, Bloomrosen M, Rosen-bloom ST, Weaver CA, Wright A. et al. The future state of clinical data capture and documentation: a report from AMIA’s 2011 Policy Meeting. J Am Med Inform Assoc 2013; 20: 134-40.
  • 237 Rogers EM. Diffusion of Innovations. 4th Edition 2010
  • 238 Liu JLY, Wyatt JC. The case for randomized controlled trials to assess the impact of clinical information systems. J Am Med Inform Assoc 2011; 18: 173-80.
  • 239 Kaplan B. Evaluating informatics applications— clinical decision support systems literature review. Int J Med Inform 2001; 64: 15-37.
  • 240 Friedman CP. A “fundamental theorem” of biomedical informatics. J Am Med Inform Assoc 2009; 16: 169-70.
  • 241 Swenson CJ, Appel A, Sheehan M, Hammer A, Fenner Z, Phibbs S. et al. Using information technology to improve adult immunization delivery in an integrated urban health system. Jt Comm J Qual Patient Saf 2012; Jan 38 (Suppl. 01) 15-23.
  • 242 Nagykaldi Z, Aspy CB, Chou A, Mold JW. Impact of a Wellness Portal on the delivery of patient-centered preventive care. J Am Board Fam Med 2012; 25: 158-67.
  • 243 Chou AF, Nagykaldi Z, Aspy CB, Mold JW. Promoting Patient-Centered Preventive Care Using a Wellness Portal: Preliminary Findings. J Prim Care Community Health 2010; 1: 88-92.
  • 244 Lorenzi NM, Kouroubali A, Detmer DE, Bloomrosen M. How to successfully select and implement electronic health records (EHR) in small ambulatory practice settings. BMC Med Inform Decis Mak 2009; 9: 15.
  • 245 Middleton B, Anderson J, Fletcher J, Masarie FE, Leavitt MK. Use of the WWW for distributed knowledge engineering for an EMR: the KnowledgeBank concept. Proc AMIA Symp 1998; 126-30.
  • 246 Wright A, Bates DW, Middleton B, Hongsermeier T, Kashyap V, Thomas SM. et al. Creating and sharing clinical decision support content with Web 2.0: Issues and examples. J Biomed Inform 2009; 42: 334-46.
  • 247 Wegner DM, Ward AF. How Google is changing your brain. Sci Am 2013; 309 (Suppl. 06) 58-61.
  • 248 Tang H, Ng JHK. Googling for a diagnosis--use of Google as a diagnostic aid: internet based study. BMJ 2006; 333: 1143-5.
  • 249 Fischer B. The End of Expertise. HBR.org 2015 https://hbr.org/2015/10/the-end-of-expertise (accessed October 25, 2015)
  • 250 Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 2011; 12: 417-28.
  • 251 Littman BH, Marincola FM. Create a translational medicine knowledge repository--research downsizing, mergers and increased outsourcing have reduced the depth of in-house translational medicine expertise and institutional memory at many pharmaceutical and biotech companies: how will they avoid relearning old lessons?. J Transl Med 2011; 9: 56.
  • 252 Van Mulligen EM, Van Der Eijk C, Kors JA, Schijvenaars BJA, Mons B. Research for research: tools for knowledge discovery and visualization. Proc AMIA Symp 2002; 835-9.
  • 253 Sahoo SS, Nguyen V, Bodenreider O, Parikh P, Minning T, Sheth AP. A unified framework for managing provenance information in translational research. BMC Bioinformatics 2011; 12: 461.
  • 254 Daniel C, Choquet R. Information technology for clinical, translational and comparative effectiveness research. Findings from the section clinical research informatics Yearb Med Inform 2014; 9: 224-7.
  • 255 Kawamoto K, Lobach DF, Willard HF, Ginsburg GS. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine. BMC Med Inform Decis Mak 2009; 9: 17
  • 256 Kawamoto K, Hongsermeier T, Wright A, Lewis J, Bell DS, Middleton B. Key principles for a national clinical decision support knowledge sharing framework: synthesis of insights from leading subject matter experts. J Am Med Inform Assoc 2013; 20: 199-207.
  • 257 Phansalkar S, Desai A, Choksi A, Yoshida E, Doole J, Czochanski M. et al. Criteria for assessing high-priority drug-drug interactions for clinical decision support in electronic health records. BMC Med Inform Decis Mak 2013; 13: 65.
  • 258 Kohane IS, Masys DR, Altman RB. The incidentalome: a threat to genomic medicine. JAMA 206 296: 212-5.
  • 259 Blois MS. Clinical judgment and computers. N Eng J Med 1980; 303: 192-7.
  • 260 Légaré F, Witteman HO. Shared decision making: examining key elements and barriers to adoption into routine clinical practice. Health Aff (Mill-wood) 2013; 32: 276-84.
  • 261 Green ED, Guyer MS. National Human Genome Research Institute, Charting a course for genomic medicine from base pairs to bedside. Nature 2011; 470: 204-13.
  • 262 Sander C. Genomic Medicine and the Future of Health Care. Science 2000; 287: 1977-8.
  • 263 Kaelber DC, Jha AK, Johnston D, Middleton B, Bates DW. A Research Agenda for Personal Health Records (PHRs). J Am Med Inform Assoc 2008; 15: 729-36.
  • 264 Hamburg MA, Collins FS. The Path to Personalized Medicine. N Eng J Med 2010; 363: 301-4.
  • 265 Eddy DM, Schlessinger L. Methods for Building and Validating Equations for Physiology-Based Mathematical Models: Glucose Metabolism and Type 2 Diabetes in the Archimedes Model, Med Decis Making. 2015
  • 266 David Eddy Created The Archimedes Model To Predict And Analyze Care. Health Aff (Milwood) 2012; 31: 2451-2.
  • 267 Musen MA. Dimensions of knowledge sharing and reuse. Comp Biomed Res 1992; 25: 435-67.
  • 268 Finkelstein JB. Translational Research Going Mainstream. JNCI J Natl Cancer Inst 2008; 100: 1430-1.
  • 269 PPayne PRO, Embi PJ, Niland J. Foundational biomedical informatics research in the clinical and translational science era: a call to action. J Am Med Inform Assoc 2010; 17: 615-6.
  • 270 Szalma S, Koka V, Khasanova T, Perakslis ED. Effective knowledge management in translational medicine. JTransl Med 2010; 8: 68.
  • 271 Sarkar IN. Biomedical informatics and translational medicine. J Transl Med 2010; 8: 22.
  • 272 Mandl KD, Kohane IS. Time for a Patient-Driven Health Information Economy?. N Eng J Med 2016; 374: 205-8.