Nuklearmedizin 2007; 46(03): 93-100
DOI: 10.1160/nukmed-0046
Original Article
Schattauer GmbH

Cerebral haemodynamics during hypo- and hypercapnia

Determination with simultaneous 15O-butanol-PET and transcranial Doppler sonographyZerebrale Blutflussdynamik während Hypo- und HyperkapnieBestimmung mittels simultaner 15O-Butanol-PET und transkranieller Doppler-Sonographie
T. D. Poeppel*
1   Klinik für Nuklearmedizin der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich
2   Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf
,
C. Terborg*
3   Klinik und Poliklinik für Neurologie, Friedrich-Schiller-Universität Jena
,
H. Hautzel
1   Klinik für Nuklearmedizin der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich
2   Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf
,
H. Herzog
4   Institut für Medizin, Forschungszentrum Jülich
,
O. W. Witte
3   Klinik und Poliklinik für Neurologie, Friedrich-Schiller-Universität Jena
,
H.-W. Mueller
1   Klinik für Nuklearmedizin der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich
2   Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf
,
B. J. Krause
1   Klinik für Nuklearmedizin der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich
2   Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 25. August 2006

accepted in revised form: 15. Januar 2007

Publikationsdatum:
28. Dezember 2017 (online)

Summary

Aim: Transcranial Doppler sonography (TCD) is increasingly used in cerebrovascular disease for monitoring brain perfusion. It allows estimation of cerebral blood flow (CBF) by the measurement of cerebral blood flow velocity (CBFV). The CBFV as well as CBF are intimately associated with the intravascular CO2-concentration. Thus, hyper- or hypocapnia can be used to induce a defined range of blood flows. The aim of our study was the comparison of vasomotor reactivity assessed with simultaneous TCD and quantitative regional CBFmeasurements (rCBF) by PET (serving as the reference method for in-vivo quantification of rCBF). Patients, methods: Six healthy young volunteers participated in this study. CBF was measured using 15O-butanol PET. A flow and dispersion- model was fitted to the measured time activity curves using arterial input curves. Each subject underwent five scans at five different end-tidal CO2 levels (EtCO2): 25, 32, 40, 48, and 55 mmHg. CBFV was assessed by continuous bilateral TCD of the middle cerebral artery (MCA). Volumes of interest for rCBF determination were placed in grey matter of the prefrontal cortex (PFC) as determined from individual MRIs. Comparisons between the rCBF, EtCO2 and CBFV were carried out with regression and correlation analysis and paired t-tests. Results: Strong positive linear correlations of rCBF and CBFV with the CO2-concentration and linear relationships between rCBF and CBFV were found in each individual. Normalised CO2-reactivities measured by TCD and PET were closely correlated. Conclusions: TCD-measurements of vascular reactivity in healthy volunteers show a high correlation to those acquired with PET that serves as the reference method of quantitative rCBF-measurement. The results of the MCA insonation are a close approximation of the rCBF changes induced by variations of EtCO2.

Zusammenfassung

Die transkranielle Doppler-Sonographie (TCD) wird zunehmend zur Überwachung der Hirnperfusion bei zerebrovaskulären Erkrankungen eingesetzt. Die TCD ermöglicht die Bestimmung des zerebralen Blutflusses (CBF) durch Messung der zerebralen Blutflussgeschwindigkeit (CBFV). CBFV und CBF sind eng an die intravaskuläre CO2-Konzentration gekoppelt. Somit können Hypo- und Hyperkapnie zur Erzeugung definierter Blutflüsse genutzt werden. Das Ziel unserer Studie war ein Vergleich der Vasomotorreaktivitätsbestimmungen simultaner TCD-Messungen zur CBFV und quantitativer regionaler (r) CBF-PET-Messungen, wobei die PET als Referenzmethode der In-vivo-rCBF-Quantifikation fungierte. Patienten, Methoden: Untersucht wurden sechs junge Normalprobanden. Die CBF-Bestimmung erfolgte mittels 15O-Butanol-PET und Anpassung eines Flow-and-dispersion- Modells an die gemessenen Zeitaktivitätskurven mit Hilfe der arteriellen Eingangskurven. Jeder Proband wurde fünfmal während unterschiedlicher end-tidaler CO2-Konzentrationen (EtCO2) gemessen: 25, 32, 40, 48 und 55 mmHg. Die CBFV wurde mittels kontinuierlicher Insonation der A. cerebri media (MCA) beidseits erhoben. Zur rCBF-Bestimmung wurden Volumes of Interest in der grauen Substanz des individuell anhand des MRT abgegrenzten präfrontalen Kortex (PFC) platziert. Vergleiche zwischen rCBF, EtCO2 und CBFV wurden mittels Regressions- und Korrelationsanalyse sowie gepaartem t-Test durchgeführt. Ergebnisse: Es zeigte sich eine hohe Korrelation von rCBF und CBF mit dem Et- CO2 sowie eine positive lineare Beziehung zwischen rCBF und CBFV bei allen Probanden. Die normalisierten CO2-Reaktivitäten waren ebenfalls hoch korreliert. Schlussfolgerungen: TCD-Messungen der Gefäßreaktivität zeigen eine hohe Korrelation mit Messwerten der 15O-Butanol-PET als Referenzmethode der quantitativen rCBF-Bestimmung. Die Ergebnisse der MCA-Insonation stellen eine gute Näherung an die EtCO2-induzierten änderungen der rCBF-Werte dar.

* The authors contributed equally.


 
  • References

  • 1 Astrup J, Symon L, Branston NM. et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977; 8: 51-57.
  • 2 Bednarczyk EM, Rutherford WF, Leisure GP. et al. Hyperventilation-induced reduction in cerebral blood flow: assessment by positron emission tomography. DICP 1990; 24: 456-460.
  • 3 Branston NM, Strong AJ, Symon L. Extracellular potassium activity, evoked potential and tissue blood flow. Relationships during progressive is- chaemia in baboon cerebral cortex. J Neurol Sci 1977; 32: 305-321.
  • 4 Brauer P, Kochs E, Werner C. et al. Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol 1998; 10: 80-85.
  • 5 Cipolla MJ, Lessov N, Clark WM. et al. Post-ischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator. Stroke 2000; 31: 940-945.
  • 6 Clark JM, Skolnick BE, Gelfand R. et al. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest. J Cereb Blood Flow Metab 1996; 16: 1255-1262.
  • 7 Dahl A, Russell D, Nyberg-Hansen R. et al. A comparison of regional cerebral blood flow and middle cerebral artery blood flow velocities: simultaneous measurements in healthy subjects. J Cereb Blood FlowMetab 1992; 12: 1049-1054.
  • 8 Dahl A, Russell D, Nyberg-Hansen R. et al. Cerebral vasoreactivity in unilateral carotid artery disease. A comparison of blood flow velocity and regional cerebral blood flow measurements. Stroke 1994; 25: 621-626.
  • 9 Demolis P, Tran DinhYR, Giudicelli JF. Relationships between cerebral regional blood flow velocities and volumetric blood flows and their respective reactivities to acetazolamide. Stroke 1996; 27: 1835-1839.
  • 10 Diamant M, Harms MP, Immink RV. et al. Twenty- four-hour non-invasive monitoring of systemic haemodynamics and cerebral blood flow velocity in healthy humans. Acta Physiol Scand 2002; 175: 1-9.
  • 11 Eriksson L, Bohm C, Kesselberg M. et al. An automated blood sampling system used in positron tomography. Nucl Sci Appl 1988; 3: 133-143.
  • 12 Furlan M, Marchal G, Viader F. et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996; 40: 216-226.
  • 13 Herzog H, Seitz RJ, Tellmann L. et al. Quantitation of regional cerebral blood flow with 15O-butanol and positron emission tomography in humans. J Cereb Blood Flow Metab 1996; 16: 645-649.
  • 14 Hirano T, Minematsu K, Hasegawa Y. et al. Acetazolamide reactivity on 123I-IMP single photon emission computed tomography in patients with major cerebral artery occlusive disease: correlation with positron emission tomography parameters. J Cereb Blood Flow Metab 1994; 14: 763-770.
  • 15 Huber P, Handa J. Effect of contrast material, hy- percapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Invest Radiol 1967; 2: 17-32.
  • 16 Ito H, Yokoyama I, Iida H. et al. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab 2000; 20: 1264-1270.
  • 17 Kanno I, Uemura K, Higano S. et al. Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional CO2 responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 1988; 8: 227-235.
  • 18 Kemna LJ, Posse S, Tellmann L. et al. Interdependence of regional and global cerebral blood flow during visual stimulation: an 15O-butanol positron emission tomography study. J Cereb Blood Flow Metab 2001; 21: 664-670.
  • 19 Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. JClin Invest 1948; 27: 484-492.
  • 20 Kleiser B, Scholl D, Widder B. Doppler CO2 and Diamox test - decreased reliability by changes of the vessel diameter. Cerebrovasc Dis 1995; 5: 397-402.
  • 21 Kontos HA. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 1989; 20: 1-3.
  • 22 Lassen NA. Normal average value of cerebral blood flowin younger adults is 50 ml/100 g/min. J Cereb Blood Flow Metab 1985; 5: 347-349.
  • 23 Levine RL, Sunderland JJ, Lagreze HL. et al. Cerebral perfusion reserve indexes determined by flu- oromethane positron emission scanning. Stroke 1988; 19: 19-27.
  • 24 Lindegaard KF, Lundar T, Wiberg J. et al. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke 1987; 18: 1025-1030.
  • 25 Marchal G, Beaudouin V, Rioux P. et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET- CT study with voxel-based data analysis. Stroke 1996; 27: 599-606.
  • 26 Minhas PS, Menon DK, Smielewski P. et al. Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. Neurosurgery 2003; 52: 1017-1022.
  • 27 Newell DW, Aaslid R, Lam A. et al. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 1994; 25: 793-797.
  • 28 Novak V, Spies JM, Novak P. et al. Hypocapniaand cerebral hypoperfusion in orthostatic intolerance. Stroke 1998; 29: 1876-1881.
  • 29 Okudaira Y, Bandoh K, Arai H. et al. Evaluation of the acetazolamide test. Vasoreactivity and cerebral blood volume. Stroke 1995; 26: 1234-1239.
  • 30 Panerai RB, Deverson ST, Mahony P. et al. Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 1999; 20: 265-275.
  • 31 Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev 1990; 2: 161-192.
  • 32 Pindzola RR, Balzer JR, Nemoto EM. et al. Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler. Stroke 2001; 32: 1811-1817.
  • 33 Ramsay SC, Murphy K, Shea SA. et al. Changes in global cerebral blood flowin humans: effect on regional cerebral blood flow during a neural activation task. J Physiol 1993; 471: 521-534.
  • 34 Raper AJ, Kontos HA, Patterson Jr. JL. Response of pial precapillary vessels to changes in arterial carbon dioxide tension. Circ Res 1971; 28: 518-523.
  • 35 Reivich M. Arterial Pco2 + Cerebral Hemodynamics. Am J Physiol 1964; 206: 25-35.
  • 36 Ringelstein EB, Sievers C, Ecker S. et al. Noninvasive assessment of C02-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988; 19: 963-969.
  • 37 Rostrup E, Law I, Blinkenberg M. et al. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage 2000; 11: 87-97.
  • 38 Rostrup E, Law I, Pott F. et al. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Res 2002; 954: 183-93.
  • 39 Rubin G, Firlik AD, Levy EI. et al. Relationship between cerebral blood flow and clinical outcome in acute stroke. Cerebrovasc Dis 2000; 10: 298-306.
  • 40 Sabri O, Owega A, Schreckenberger M. et al. A truly simultaneous combination of functional transcranial Doppler sonography and H215OPET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. JNucl Med 2003; 44: 671-681.
  • 41 Saver JL, Biller J. Superficial middle cerebral artery. In: Bogousslavsky CL (Hrsg) Stroke Syndromes. Cambridge: Cambridge University Press; 1995: 247-258.
  • 42 Shimosegawa E, Kanno I, Hatazawa J. et al. Photic stimulation study of changing the arterial partial pressure level of carbon dioxide. J Cereb Blood FlowMetab 1995; 15: 111-114.
  • 43 Steiner LA, Coles JP, Johnston AJ. et al. Assessment of cerebrovascular autoregulation in head- injured patients. A validation study Stroke 2003; 34: 2404-2409.
  • 44 Sugimori H, Ibayashi S, Fujii K. et al. Can transcranial Doppler really detect reduced cerebral perfusion states?. Stroke 1995; 26: 2053-2060.
  • 45 Terborg C, Bramer S, Harscher S. et al. Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke bynear-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry 2004; 75: 38-42.
  • 46 Valdueza JM, Balzer JO, Villringer A. et al. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. AJNR Am J Neuroradiol 1997; 18: 1929-1934.
  • 47 Valdueza JM, Draganski B, Hoffmann O. et al. Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 1999; 30: 81-86.
  • 48 Zaers J, Adam LE, Ostertag H. et al. Performance characteristics of the PET scanner ECAT exact HR+. JNucl Med 1996; 37: 1002.