Thromb Haemost 2018; 118(01): 028-041
DOI: 10.1160/TH17-06-0404
Review Article
Schattauer GmbH Stuttgart

Insights into 3D Structure of ADAMTS13: A Stepping Stone towards Novel Therapeutic Treatment of Thrombotic Thrombocytopenic Purpura

Bogac Ercig*
,
Kanin Wichapong
,
Chris P. M. Reutelingsperger*
,
Karen Vanhoorelbeke*
,
Jan Voorberg*
,
Gerry A.F. Nicolaes*
Further Information

Publication History

12 June 2017

13 October 2017

Publication Date:
05 January 2018 (online)

Abstract

ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type-1 motif, member 13) and von Willebrand factor (VWF) can be considered as scale weights which control platelet adhesion during primary haemostasis. In a very uncommon condition designated thrombotic thrombocytopenic purpura (TTP), functional absence of ADAMTS13 tips the balance toward VWF-mediated platelet adhesion in the microcirculation. TTP is associated with a high mortality and arises from either a congenital or acquired autoimmune deficiency of the plasma enzyme ADAMTS13. In case of acquired ADAMTS13 deficiency, autoantibodies bind to and inhibit the function of ADAMTS13. Currently available treatments of TTP aim to supply ADAMTS13 through plasma exchange or are aimed at B-cell depletion with rituximab. None of the available therapeutics, however, aims at protection of ADAMTS13 from circulating autoantibodies. In this review, our aim is to describe the structure–function relationship of ADAMTS13 employing homology models and previously published crystal structures. Structural bioinformatics investigation of ADAMTS13 reveals many insights and explains how mutations and autoantibodies may lead to the pathophysiology of TTP. The results of these studies provide a roadmap for the further development of rationally designed therapeutics for the treatment of patients with acquired TTP. In addition, we share our opinion on the state of the art of the open–closed conformations of ADAMTS13 which regulate the activity of this highly specific VWF cleaving protease.

* On behalf of the PROFILE Consortium, http://www.itn-profile.eu/


 
  • References

  • 1 Török TJ, Holman RC, Chorba TL. Increasing mortality from thrombotic thrombocytopenic purpura in the United States--analysis of national mortality data, 1968-1991. Am J Hematol 1995; 50 (02) 84-90
  • 2 Levy GG, Motto DG, Ginsburg D. ADAMTS13 turns 3. Blood 2005; 106 (01) 11-17
  • 3 Moake JL. Thrombotic microangiopathies. N Engl J Med 2002; 347 (08) 589-600
  • 4 Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc 1924; 24: 21-24
  • 5 Oka S, Nohgawa M. EB virus reactivation triggers thrombotic thrombocytopenic purpura in a healthy adult. Leuk Res Rep 2017; 8: 1-3
  • 6 Mansouri Taleghani M, von Krogh AS, Fujimura Y. , et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie 2013; 33 (02) 138-143
  • 7 Oberic L, Buffet M, Schwarzinger M. , et al; Reference Center for the Management of Thrombotic Microangiopathies. Cancer awareness in atypical thrombotic microangiopathies. Oncologist 2009; 14 (08) 769-779
  • 8 Matsuyama T, Uemura M, Ishikawa M. , et al. Increased von Willebrand factor over decreased ADAMTS13 activity may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol Clin Exp Res 2007; 31 (1, Suppl): S27-S35
  • 9 Veyradier A, Obert B, Houllier A, Meyer D, Girma JP. Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases. Blood 2001; 98 (06) 1765-1772
  • 10 Coppo P, Adrie C, Azoulay E. , et al. Infectious diseases as a trigger in thrombotic microangiopathies in intensive care unit (ICU) patients?. Intensive Care Med 2003; 29 (04) 564-569
  • 11 Rieger M, Mannucci PM, Kremer Hovinga JA. , et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 2005; 106 (04) 1262-1267
  • 12 Rock GA. Management of thrombotic thrombocytopenic purpura. Br J Haematol 2000; 109 (03) 496-507
  • 13 Boye J, Elter T, Engert A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann Oncol 2003; 14 (04) 520-535
  • 14 Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Rituximab reduces risk for relapse in patients with thrombotic thrombocytopenic purpura. Blood 2016; 127 (24) 3092-3094
  • 15 Westwood J-P, Webster H, McGuckin S, McDonald V, Machin SJ, Scully M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost 2013; 11 (03) 481-490
  • 16 Hie M, Gay J, Galicier L. , et al; French Thrombotic Microangiopathies Reference Centre. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura. Blood 2014; 124 (02) 204-210
  • 17 Peyvandi F, Scully M, Kremer Hovinga JA. , et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
  • 18 George JN. How I treat patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Blood 2000; 96 (04) 1223-1229
  • 19 Gerritsen HE, Robles R, Lämmle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98 (06) 1654-1661
  • 20 Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 2001; 276 (44) 41059-41063
  • 21 Zhou W, Inada M, Lee TP. , et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest 2005; 85 (06) 780-788
  • 22 Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci U S A 2009; 106 (46) 19274-19279
  • 23 Verbij FC, Stokhuijzen E, Kaijen PHP, van Alphen F, Meijer AB, Voorberg J. Identification of glycans on plasma-derived ADAMTS13. Blood 2016; 128 (21) e51-e58
  • 24 Majerus EM, Zheng X, Tuley EA, Sadler JE. Cleavage of the ADAMTS13 propeptide is not required for protease activity. J Biol Chem 2003; 278 (47) 46643-46648
  • 25 Akiyama M, Nakayama D, Takeda S, Kokame K, Takagi J, Miyata T. Crystal structure and enzymatic activity of an ADAMTS-13 mutant with the East Asian-specific P475S polymorphism. J Thromb Haemost 2013; 11 (07) 1399-1406
  • 26 Brocker CN, Vasiliou V, Nebert DW. Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum Genomics 2009; 4 (01) 43-55
  • 27 Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 1990; 87 (14) 5578-5582
  • 28 Matthews DJ, Goodman LJ, Gorman CM, Wells JA. A survey of furin substrate specificity using substrate phage display. Protein Sci 1994; 3 (08) 1197-1205
  • 29 Stone AL, Kroeger M, Sang QXA. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). (Review) J Protein Chem 1999; 18 (04) 447-465
  • 30 Bode W, Gomis-Rüth FX, Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 1993; 331 (1-2): 134-140
  • 31 Shibagaki Y, Matsumoto M, Kokame K. , et al. Novel compound heterozygote mutations (H234Q/R1206X) of the ADAMTS13 gene in an adult patient with Upshaw-Schulman syndrome showing predominant episodes of repeated acute renal failure. Nephrol Dial Transplant 2006; 21 (05) 1289-1292
  • 32 Tallant C, García-Castellanos R, Baumann U, Gomis-Rüth FX. On the relevance of the Met-turn methionine in metzincins. J Biol Chem 2010; 285 (18) 13951-13957
  • 33 Uchida T, Wada H, Mizutani M. , et al; Research Project on Genetics of Thrombosis. Identification of novel mutations in ADAMTS13 in an adult patient with congenital thrombotic thrombocytopenic purpura. Blood 2004; 104 (07) 2081-2083
  • 34 Gardner MD, Chion CK, de Groot R, Shah A, Crawley JT, Lane DA. A functional calcium-binding site in the metalloprotease domain of ADAMTS13. Blood 2009; 113 (05) 1149-1157
  • 35 Lancellotti S, Peyvandi F, Pagliari MT. , et al. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura. A clinical, biochemical and in silico study. Thromb Haemost 2016; 115 (01) 51-62
  • 36 Grillberger R, Casina VC, Turecek PL, Zheng XL, Rottensteiner H, Scheiflinger F. Anti-ADAMTS13 IgG autoantibodies present in healthy individuals share linear epitopes with those in patients with thrombotic thrombocytopenic purpura. Haematologica 2014; 99 (04) e58-e60
  • 37 de Groot R, Lane DA, Crawley JTB. The ADAMTS13 metalloprotease domain: roles of subsites in enzyme activity and specificity. Blood 2010; 116 (16) 3064-3072
  • 38 Levy GG, Nichols WC, Lian EC. , et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 39 Schneppenheim R, Budde U, Oyen F. , et al. von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP. Blood 2003; 101 (05) 1845-1850
  • 40 Musial J, Niewiarowski S, Rucinski B. , et al. Inhibition of platelet adhesion to surfaces of extracorporeal circuits by disintegrins. RGD-containing peptides from viper venoms. Circulation 1990; 82 (01) 261-273
  • 41 Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood 1988; 71 (04) 831-843
  • 42 Zheng X, Nishio K, Majerus EM, Sadler JE. Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem 2003; 278 (32) 30136-30141
  • 43 de Groot R, Bardhan A, Ramroop N, Lane DA, Crawley JT. Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 2009; 113 (22) 5609-5616
  • 44 de Groot R, Lane DA, Crawley JTB. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis. Blood 2015; 125 (12) 1968-1975
  • 45 Blobel CP. Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell 1997; 90 (04) 589-592
  • 46 Mosyak L, Georgiadis K, Shane T. , et al. Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci 2008; 17 (01) 16-21
  • 47 Gerhardt S, Hassall G, Hawtin P. , et al. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol 2007; 373 (04) 891-902
  • 48 Gao W, Anderson PJ, Majerus EM, Tuley EA, Sadler JE. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci U S A 2006; 103 (50) 19099-19104
  • 49 Fujimura Y, Matsumoto M, Kokame K. , et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: a series of 15 pregnancies in 9 genotyped patients. Br J Haematol 2009; 144 (05) 742-754
  • 50 Manea M, Kristoffersson A, Schneppenheim R. , et al. Podocytes express ADAMTS13 in normal renal cortex and in patients with thrombotic thrombocytopenic purpura. Br J Haematol 2007; 138 (05) 651-662
  • 51 Yamaguchi Y, Moriki T, Igari A. , et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res 2011; 128 (02) 169-173
  • 52 Kokame K, Matsumoto M, Soejima K. , et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A 2002; 99 (18) 11902-11907
  • 53 Zondlo NJ. Aromatic-proline interactions: electronically tunable CH/π interactions. Acc Chem Res 2013; 46 (04) 1039-1049
  • 54 Soejima K, Matsumoto M, Kokame K. , et al. ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood 2003; 102 (09) 3232-3237
  • 55 Tao Z, Wang Y, Choi H. , et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow. Blood 2005; 106 (01) 141-143
  • 56 Pos W, Crawley JTB, Fijnheer R, Voorberg J, Lane DA, Luken BM. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood 2010; 115 (08) 1640-1649
  • 57 Jin SY, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor. Blood 2010; 115 (11) 2300-2310
  • 58 Luken BM, Turenhout EA, Hulstein JJ, Van Mourik JA, Fijnheer R, Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 2005; 93 (02) 267-274
  • 59 Luken BM, Turenhout EA, Kaijen PH. , et al. Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 provide a common antigenic core required for binding of antibodies in patients with acquired TTP. Thromb Haemost 2006; 96 (03) 295-301
  • 60 Pos W, Sorvillo N, Fijnheer R. , et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica 2011; 96 (11) 1670-1677
  • 61 Jian C, Xiao J, Gong L. , et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood 2012; 119 (16) 3836-3843
  • 62 Pillai VG, Bao J, Zander CB. , et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood 2016; 128 (01) 110-119
  • 63 Cao W, Pham HP, Williams LA. , et al. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura. Haematologica 2016; 101 (11) 1319-1326
  • 64 Nowak AA, O'Brien HER, Henne P. , et al. ADAMTS-13 glycans and conformation-dependent activity. J Thromb Haemost 2017; 15 (06) 1155-1166
  • 65 Lee HS, Qi Y, Im W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 2015; 5: 8926
  • 66 Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 2000; 218 (02) 280-299
  • 67 Tan K, Duquette M, Liu JH. , et al. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 2002; 159 (02) 373-382
  • 68 Deforche L, Roose E, Vandenbulcke A. , et al. Linker regions and flexibility around the metalloprotease domain account for conformational activation of ADAMTS-13. J Thromb Haemost 2015; 13 (11) 2063-2075
  • 69 Sorvillo N, Pos W, van den Berg LM. , et al. The macrophage mannose receptor promotes uptake of ADAMTS13 by dendritic cells. Blood 2012; 119 (16) 3828-3835
  • 70 Ricketts LM, Dlugosz M, Luther KB, Haltiwanger RS, Majerus EM. O-fucosylation is required for ADAMTS13 secretion. J Biol Chem 2007; 282 (23) 17014-17023
  • 71 South K, Luken BM, Crawley JT. , et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A 2014; 111 (52) 18578-18583
  • 72 Ling J, Su J, Ma Z, Ruan C. The WXXW motif in the TSR1 of ADAMTS13 is important for its secretion and proteolytic activity. Thromb Res 2013; 131 (06) 529-534
  • 73 Wang LW, Leonhard-Melief C, Haltiwanger RS, Apte SS. Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan. J Biol Chem 2009; 284 (44) 30004-30015
  • 74 Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 1999; 96 (17) 9459-9464
  • 75 Camilleri RS, Cohen H, Mackie IJ. , et al. Prevalence of the ADAMTS-13 missense mutation R1060W in late onset adult thrombotic thrombocytopenic purpura. J Thromb Haemost 2008; 6 (02) 331-338
  • 76 Yeh HC, Zhou Z, Choi H. , et al. Disulfide bond reduction of von Willebrand factor by ADAMTS-13. J Thromb Haemost 2010; 8 (12) 2778-2788
  • 77 Bao J, Xiao J, Mao Y, Zheng XL. Carboxyl terminus of ADAMTS13 directly inhibits platelet aggregation and ultra large von Willebrand factor string formation under flow in a free-thiol-dependent manner. Arterioscler Thromb Vasc Biol 2014; 34 (02) 397-407
  • 78 Bork P, Beckmann G. The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 1993; 231 (02) 539-545
  • 79 Pimanda JE, Maekawa A, Wind T, Paxton J, Chesterman CN, Hogg PJ. Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Blood 2004; 103 (02) 627-629
  • 80 Shang D, Zheng XW, Niiya M, Zheng XL. Apical sorting of ADAMTS13 in vascular endothelial cells and Madin-Darby canine kidney cells depends on the CUB domains and their association with lipid rafts. Blood 2006; 108 (07) 2207-2215
  • 81 Donadelli R, Banterla F, Galbusera M. , et al; International Registry of Recurrent and Familial HUS/TTP. In-vitro and in-vivo consequences of mutations in the von Willebrand factor cleaving protease ADAMTS13 in thrombotic thrombocytopenic purpura. Thromb Haemost 2006; 96 (04) 454-464
  • 82 Romero A, Romão MJ, Varela PF. , et al. The crystal structures of two spermadhesins reveal the CUB domain fold. Nat Struct Biol 1997; 4 (10) 783-788
  • 83 Zhou Z, Yeh HC, Jing H. , et al. Cysteine residues in CUB-1 domain are critical for ADAMTS13 secretion and stability. Thromb Haemost 2011; 105 (01) 21-30
  • 84 Thangudu RR, Manoharan M, Srinivasan N, Cadet F, Sowdhamini R, Offmann B. Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families. BMC Struct Biol 2008; 8: 55
  • 85 Tao Z, Peng Y, Nolasco L. , et al. Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under flow conditions. Blood 2005; 106 (13) 4139-4145
  • 86 Xiao J, Jin SY, Xue J, Sorvillo N, Voorberg J, Zheng XL. Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis. Arterioscler Thromb Vasc Biol 2011; 31 (10) 2261-2269
  • 87 Feys HB, Anderson PJ, Vanhoorelbeke K, Majerus EM, Sadler JE. Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost 2009; 7 (12) 2088-2095
  • 88 Crawley JTB, de Groot R, Xiang Y, Luken BM, Lane DA. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118 (12) 3212-3221
  • 89 Zanardelli S, Chion ACK, Groot E. , et al. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF. Blood 2009; 114 (13) 2819-2828
  • 90 Andersen CBF, Moestrup SK. How calcium makes endocytic receptors attractive. Trends Biochem Sci 2014; 39 (02) 82-90
  • 91 Muia J, Zhu J, Gupta G. , et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A 2014; 111 (52) 18584-18589
  • 92 South K, Freitas MO, Lane DA. Conformational quiescence of ADAMTS-13 prevents proteolytic promiscuity. J Thromb Haemost 2016; 14 (10) 2011-2022
  • 93 South K, Freitas MO, Lane DA. A model for the conformational activation of the structurally quiescent metalloprotease ADAMTS13 by von Willebrand factor. J Biol Chem 2017; 292 (14) 5760-5769
  • 94 Guo C, Tsigkou A, Lee MH. ADAMTS13 and 15 are not regulated by the full length and N-terminal domain forms of TIMP-1, -2, -3 and -4. Biomed Rep 2016; 4 (01) 73-78
  • 95 Holmberg L, Dent JA, Schneppenheim R, Budde U, Ware J, Ruggeri ZM. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J Clin Invest 1993; 91 (05) 2169-2177
  • 96 Hassenpflug WA, Budde U, Obser T. , et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood 2006; 107 (06) 2339-2345
  • 97 Jilma-Stohlawetz P, Quehenberger P, Schima H. , et al. Acquired von Willebrand factor deficiency caused by LVAD is ADAMTS-13 and platelet dependent. Thromb Res 2016; 137: 196-201
  • 98 Crawley JT, Lam JK, Rance JB, Mollica LR, O'Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood 2005; 105 (03) 1085-1093
  • 99 Thomas MR, de Groot R, Scully MA, Crawley JT. Pathogenicity of anti-ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. EBioMedicine 2015; 2 (08) 942-952
  • 100 Vanhoorelbeke K, De Meyer SF. Animal models for thrombotic thrombocytopenic purpura. J Thromb Haemost 2013; 11 (Suppl. 01) 2-10
  • 101 Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120 (06) 1157-1164
  • 102 Moatti-Cohen M, Garrec C, Wolf M. , et al; French Reference Center for Thrombotic Microangiopathies. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood 2012; 119 (24) 5888-5897
  • 103 Castaman G. Changes of von Willebrand factor during pregnancy in women with and without von Willebrand disease. Mediterr J Hematol Infect Dis 2013; 5 (01) e2013052
  • 104 Krieger E, Joo K, Lee J. , et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 2009; 77 (Suppl. 09) 114-122
  • 105 Chen VB, Arendall III WB, Headd JJ. , et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010; 66 (Pt 1): 12-21
  • 106 van Zundert GCP, Rodrigues JPGLM, Trellet M. , et al. The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 2016; 428 (04) 720-725