Thromb Haemost 2013; 109(03): 407-415
DOI: 10.1160/TH12-09-0678
Theme Issue Article
Schattauer GmbH

Cellular and molecular regulation of vascular permeability

Lauren M. Goddard
1   Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
,
Luisa M. Iruela-Arispe
1   Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
2   Molecular Biology Institute, University of California, Los Angeles, California, USA
› Author Affiliations
Further Information

Publication History

Received: 19 September 2012

Accepted after minor revision: 30 January 2013

Publication Date:
29 November 2017 (online)

Summary

Vascular permeability is a highly coordinated process that integrates vesicular trafficking, complex junctional rearrangements, and refined cytoskeletal dynamics. In response to the extracellular environment, these three cellular activities have been previously assumed to work in parallel to regulate the passage of solutes between the blood and tissues. New developments in the area of vascular permeability, however have highlighted the interdependence between trans- and para-cellular pathways, the cross-communication between adherens and tight junctions, and the instructional role of pericytes on endothelial expression of barrier-related genes. Additionally, significant effort has been placed in understanding the molecular underpinings that contribute to barrier restoration following acute permeability events and in clarifying the importance of context-dependent signaling initiated by permeability mediators. Finally, recent findings have uncovered an unpredicted role for transcription factors in the coordination of vascular permeability and clarified how junctional complexes can transmit signals to the nucleus to control barrier function. The goal of this review is to provide a concise and updated view of vascular permeability, discuss the most recent advances in molecular and cellular regulation, and introduce integrated information on the central mechanisms involved in trans-endothelial transport.

 
  • References

  • 1 Armulik A, Genové G, Mae M. et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468: 557-561.
  • 2 Daneman R, Zhou L, Kebede AA. et al. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010; 468: 562-566.
  • 3 Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21: 193-215.
  • 4 Mehta D. Signalling Mechanisms Regulating Endothelial Permeability. Physiol Rev 2006; 86: 279-367.
  • 5 Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 2001; 49: 419-432.
  • 6 Razani B, Engelman JA, Wang XB. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276: 38121-38138.
  • 7 Schubert W, Frank PG, Razani B. et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 2001; 276: 48619-48622.
  • 8 Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72: 463-493.
  • 9 Sun Y, Hu G, Zhang X. et al. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res 2009; 105: 676-685.
  • 10 Joshi B, Bastiani M, Strgnell SS. et al. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol 2012; 199: 425-435.
  • 11 Schubert W, Frank PG, Woodman SE. et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 2002; 277: 40091-40098.
  • 12 Miyawaki-Shimizu K, Predescu D, Shimizu J. et al. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol 2006; 290: L405-413.
  • 13 Siddiqui MR, Komarova YA, Vogel SM. et al. Caveolin-1-eNOS signalling promotes p190RhoGAP-A nitration and endothelial permeability. J Cell Biol 2011; 30: 841-850.
  • 14 Minshall RD, Sessa WC, Stan RV. et al. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 2003; 285: L1179-1183.
  • 15 Sundivakkam PC, Kwiatek AM, Sharma TT. et al. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 2009; 296: C403-413.
  • 16 Kwiatek AM, Minshall RD, Cool DR. et al. Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 2006; 70: 1174-1183.
  • 17 Marmon S, Hinchey J, Oh P. et al. Caveolin-1 Expression Determines the Route of Neutrophil Extravasation through Skin Microvasculature. Am J Pathol 2009; 174: 684-692.
  • 18 Dejana E, Tournier-Lasserve E, Weinstein BM. The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications. Dev Cell 2009; 16: 209-221.
  • 19 Dejana E, Giampietro C. Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol 2012; 19: 218-223.
  • 20 Potter MD, Barbero S, Cheresh DA. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem 2005; 280: 31906-31912.
  • 21 Baumeister U, Funke R, Ebnet K. et al. Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 2005; 24: 1686-1695.
  • 22 Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006; 8: 1223-1234.
  • 23 Turowski P, Martinelli R, Crawford R. et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci 2008; 121: 29-37.
  • 24 Orsenigo F, Giampietro C, Ferrari A. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 2012; 3: 1208.
  • 25 Vestweber D, Winderlich M, Cagna G. et al. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 2009; 19: 8-15.
  • 26 Broermann A, Winderlich M, Block H. et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med 2011; 208: 2393-2401.
  • 27 Vandenbroucke E, Mehta D, Minshall R. et al. Regulation of Endothelial Junctional Permeability. Ann NY Acad Sci 2008; 1123: 134-145.
  • 28 Schulte D, Kuppers V, Dartsch N. et al. Stabilising the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 2011; 30: 4157-4170.
  • 29 Vandenbroucke St Amant E, Tauseef M. et al. PKCα Activation of p120-Catenin Serine 879 Phospho-Switch Disassembles VE-Cadherin Junctions and Disrupts Vascular Integrity. Circ Res 2012; 111: 739-749.
  • 30 González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signalling pathways. Biochim Biophys Acta 2008; 1778: 729-756.
  • 31 Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 2009; 284: 21036-21046.
  • 32 Furuse M. Knockout animals and natural mutations as experimental and diagnostic tool for studying tight junction functions in vivo. Biochim Biophys Acta 2009; 1788: 813-819.
  • 33 Orlova VV, Economopoulou M, Lupu F. et al. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med 2006; 203: 2703-2714.
  • 34 Li X, Stankovic M, Lee BP. et al. JAM-C induces endothelial cell permeability through its association and regulation of {beta}3 integrins. Arterioscler Thromb Vasc Biol 2009; 29: 1200-1206.
  • 35 Wegmann F, Petri B, Khandoga AG. et al. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J Exp Med 2006; 203: 1671-1677.
  • 36 Taddei A, Giampietro C, Conti A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 2008; 10: 923-934.
  • 37 Walsh TG, Murphy RP, Fitzpatrick P. et al. Stabilisation of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signalling leading to modulation of pTyr-occludin levels. J Cell Physiol 2011; 226: 3053-3063.
  • 38 Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2012; 83: 31-44
  • 39 Chavez A, Smith M, Mehta D. New insights into the regulation of vascular permeability. Int Rev Cell Mol Biol 2011; 290: 205-248.
  • 40 Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005; 437: 497-504.
  • 41 Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 2010; 87: 262-271.
  • 42 Nottebaum AF, Cagna G, Winderlich M. et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med 2008; 205: 2929-2945.
  • 43 Chen XL, Nam JO, Jean C. et al. VEGF-Induced Vascular Permeability Is Mediated by FAK. Dev Cell 2012; 22: 146-157.
  • 44 Sun Z, Li X, Massena S. et al. VEGFR2 induces c-Src signalling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med 2012; 209: 1363-1377.
  • 45 Thibeault S, Rautureau Y, Oubaha M. et al. S-Nitrosylation of beta-Catenin by eNOS-Derived NO Promotes VEGF-Induced Endothelial Cell Permeability. Mol Cell 2010; 39: 468-476.
  • 46 Lee SS, Jilani SM, Nikolova GV. et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005; 169: 681-691.
  • 47 Chen TT, Luque A, Lee S. et al. Anchorage of VEGF to the extracellular matrix conveys differential signalling responses to endothelial cells. J Cell Biol 2010; 188: 595-609.
  • 48 Augustin HG, Koh GY, Thurston G. et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009; 10: 165-177.
  • 49 Wong AL, Haroon ZA, Werner S. et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 1997; 81: 567-574.
  • 50 Thurston G, Rudge JS, Ioffe E. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6: 460-463.
  • 51 Mammoto T, Parikh SM, Mammoto A. et al. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem 2007; 282: 23910-23918.
  • 52 Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 2008; 14: 25-36.
  • 53 Jho D, Mehta D, Ahmmed G. et al. . Angiopoietin-1 Opposes VEGF-Induced Increase in Endothelial Permeability by Inhibiting TRPC1-Dependent Ca2 Influx. Circ Res 2005; 96: 1282-90.
  • 54 Oubaha M, Gratton JP. Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood 2009; 114: 3343-3351.
  • 55 Saharinen P, Eklund L, Miettinen J. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 2008; 10: 527-537.
  • 56 Fukuhara S, Sako K, Minami T. et al. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 2008; 10: 513-526.
  • 57 Scharpfenecker M, Fiedler U, Reiss Y. et al. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci 2005; 118: 771-780.
  • 58 Thomas M, Felcht M, Kruse K. et al. Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalisation and degradation. J Biol Chem 2010; 285: 23842-23849.
  • 59 Yuan HT, Khankin EV, Karumanchi SA. et al. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signalling in the endothelium. Mol Cell Biol 2009; 29: 2011-2022.
  • 60 Harfouche R, Hussain SN. Signalling and regulation of endothelial cell survival by angiopoietin-2. Am J Physiol Heart Circ Physiol 2006; 291: H1635-1645.
  • 61 Daly C, Pasnikowski E, Burova E. et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 2006; 103: 15491-15496.
  • 62 Knezevic N, Tauseef M, Thennes T. et al. The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin. J Exp Med 2009; 206: 2761-2777.
  • 63 Cullere X, Shaw SK, Andersson L. et al. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005; 105: 1950-1955.
  • 64 Fukuhara S, Sakurai A, Sano H. et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signalling pathway. Mol Cell Biol 2005; 25: 136-146.
  • 65 Kooistra MR, Dube N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci 2007; 120: 17-22.
  • 66 Glading A, Han J, Stockton RA. et al. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 2007; 179: 247-254.
  • 67 Murakami M, Nguyen LT, Zhuang ZW. et al. The FGF system has a key role in regulating vascular integrity. J Clin Invest 2008; 118: 3355-3366.
  • 68 Hatanaka K, Lanahan A, Murakami M. et al. Fibroblast Growth Factor Signalling Potentiates VE-Cadherin Stability at Adherens Junctions by Regulating SHP2. PLoS One 2012; 7: e37600.
  • 69 Sun X, Shikata Y, Wang L. et al. Enhanced interaction between focal adhesion and adherens junction proteins: involvement in sphingosine 1-phosphate-induced endothelial barrier enhancement. Microvasc Res 2009; 77: 304-313.
  • 70 Jung B, Obinata H, Galvani S. et al. Flow-regulated endothelial S1P receptor-1 signalling sustains vascular development. Dev Cell 2012; 23: 600-610.
  • 71 Gaengel K, Niaudet C, Hagikura K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 2012; 23: 587-599.
  • 72 Shikata Y, Birukov KG, Garcia JG. S1P induces FA remodelling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol 2003; 94: 1193-1203.
  • 73 Guo M, Wu MH, Granger HJ. et al. Focal adhesion kinase in neutrophil-induced microvascular hyperpermeability. Microcirculation 2005; 12: 223-232.
  • 74 Lee YH, Kayyali US, Sousa AM. et al. Transforming growth factor-beta1 effects on endothelial monolayer permeability involve focal adhesion kinase/Src. Am J Respir Cell Mol Biol 2007; 37: 485-493.
  • 75 Belvitch P, Dudek SM. Role of FAK in S1P-regulated endothelial permeability. Microvasc Res 2012; 83: 22-30.
  • 76 Shikata Y, Birukov KG, Birukova AA. et al. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodelling: role of Src and GIT. FASEB J 2003; 17: 2240-2249.
  • 77 Daly C, Wong V, Burova E. et al. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 2004; 18: 1060-1071.
  • 78 Dixit M, Bess E, Fisslthaler B. et al. Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. Cardiovasc Res 2008; 77: 160-168.
  • 79 Cowan CE, Kohler EE, Dugan TA. et al. Kruppel-Like Factor-4 Transcriptionally Regulates VE-Cadherin Expression and Endothelial Barrier Function. Circ Res 2010; 107: 959-966.
  • 80 Lin Z, Natesan V, Shi H. et al. Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 2010; 30: 1952-1959.
  • 81 Haidari M, Zhang W, Chen Z. et al. Myosin light chain phosphorylation facilitates monocyte transendothelial migration by dissociating endothelial adherens junctions. Cardiovasc Res 2011; 92: 456-465.
  • 82 David S, Ghosh CC, Mukherjee A. et al. Angiopoietin-1 Requires IQ Domain GTPase-Activating Protein 1 to Activate Rac1 and Promote Endothelial Barrier Defense. Arterioscler Thromb Vasc Biol 2011; 31: 2643-2652.
  • 83 Peng J, He F, Zhang C. et al. Protein kinase Ca signals P115RhoGEF phosphorylation and RhoA activation in TNF-a-induced mouse brain microvascular endothelial cell barrier dysfunction. J Neuroinflammation 2011; 8: 28.
  • 84 Chava KR, Tauseef M, Sharma T. et al. Cyclic AMP response element binding (CREB) protein prevents endothelial permeability increase through transcriptional controlling p190RhoGAP expression. Blood 2012; 119: 308-319.
  • 85 Zhao D, Qin L, Bourbon PM. et al. Orphan nuclear transcription factor TR3/Nur77 regulates microvessel permeability by targeting endothelial nitric oxide synthase and destabilising endothelial junctions. Proc Natl Acad Sci USA 2011; 108: 12066-12071.
  • 86 Burek M, Arias-Loza PA, Roewer N. et al. Claudin-5 as a novel estrogen target in vascular endothelium. Arterioscler Thromb Vasc Biol 2010; 30: 298-304.