Thromb Haemost 2013; 109(01): 53-60
DOI: 10.1160/TH12-05-0316
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

In vitro and in vivo evaluation of the effect of elevated factor VIII on the thrombogenic process

Mia Golder
1   Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen’s University, Kingston, Ontario, Canada
*   Current address: Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
,
Jeffrey Mewburn
2   Division of Cancer Biology and Genetics, Queen’s University Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
,
David Lillicrap
1   Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen’s University, Kingston, Ontario, Canada
› Author Affiliations
Financial support: This research was funded by the Heart and Stroke Foundation of Ontario (NA6386).
Further Information

Publication History

Received: 14 May 2012

Accepted after major revision: 09 October 2012

Publication Date:
25 November 2017 (online)

Summary

Factor VIII (FVIII), a procoagulant cofactor, plays a crucial role in the intrinsic coagulation cascade. A causal association between elevated FVIII levels and venous thrombosis incidence has been established; no such association has been confirmed with arterial thrombosis. The independent role of elevated FVIII levels in arteriolar thrombosis was evaluated in a mouse model to determine the thrombogenic potential of elevated levels of FVIII. The in vitro thrombogenic effect of elevated FVIII levels was examined using thrombin-antithrombin (TAT) complex generation and thromboelastography (TEG) assays. The thrombogenic potential of acute and extended elevation of circulating FVIII levels was assessed using ferric chloride induced injury of the cremaster arterioles. The rate of TAT complex formation, and the final concentration of TAT complexes, significantly increased as FVIII levels were elevated from 100% to 400% FVIII activity. TEG analysis of fibrin and clot formation showed that as FVIII levels were elevated, the time to initial fibrin formation decreased and the rate of fibrin formation increased. The acute elevation of circulating FVIII to 400% FVIII activity resulted in significantly decreased times to vessel occlusion. Prolonged elevation of FVIII activity did not significantly affect time to vessel occlusion. In conclusion, acute elevations in FVIII levels result in a nonlinear thrombogenic effect, with non-significant increases in thrombogenic risk within the physiological range (FVIII levels up to 200%). Prolonged elevation of plasma FVIII did not further increase the thrombogenic potential of elevated FVIII levels.

 
  • References

  • 1 Vlot AJ, Koppelman SJ, van den Berg MH. et al. The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood 1995; 85: 3150-3157.
  • 2 Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263: 10451-10455.
  • 3 Monroe DM, Hoffman M, Roberts HR. Transmission of a procoagulant signal from tissue factor-bearing cell to platelets. Blood Coagul Fibrinolysis 1996; 07: 459-464. DOI:10.1097/00001721-199606000-00005.
  • 4 Butenas S, van ’t Veer C, Mann KG. Evaluation of the initiation phase of blood coagulation using ultrasensitive assays for serine proteases. J Biol Chem 1997; 272: 21527-21533. DOI:10.1074/jbc.272.34.21527.
  • 5 Eaton D, Rodriguez H, Vehar GA. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 1986; 25: 505-512. DOI:10.1021/bi00350a035.
  • 6 van Dieijen G, Tans G, Rosing J. et al. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem 1981; 256: 3433-3442.
  • 7 Orfeo T, Brummel-Ziedins KE, Gissel M. et al. The nature of the stable blood clot procoagulant activities. J Biol Chem 2008; 283: 9776-9786. DOI:10.1074/jbc.M707435200.
  • 8 Voetsch B, Loscalzo J. Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 2004; 24: 216-229. DOI:10.1161/01.ATV.0000107402.79771.fc.
  • 9 Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451: 914-918. DOI:10.1038/nature06797.
  • 10 Bank I, Libourel EJ, Middeldorp S. et al. Elevated levels of FVIII:C within families are associated with an increased risk for venous and arterial thrombosis. J Thromb Haemost 2005; 03: 79-84. DOI:10.1111/j.1538-7836.2004.01033.x.
  • 11 Kraaijenhagen RA, in’t Anker PS, Koopman MM. et al. High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism. Thromb Haemost 2000; 83: 5-9.
  • 12 Schambeck CM, Grossmann R, Zonnur S. et al. High factor VIII (FVIII) levels in venous thromboembolism: role of unbound FVIII. Thromb Haemost 2004; 92: 42-46.
  • 13 Koster T, Blann AD, Briet E. et al. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 1995; 345: 152-155. DOI:10.1016/S0140-6736(95)90166-3.
  • 14 Tsai AW, Cushman M, Rosamond WD. et al. Coagulation factors, inflammation markers, and venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). Am J Med 2002; 113: 636-642. DOI:10.1016/S0002-9343(02)01345-1.
  • 15 Kyrle PA, Minar E, Hirschl M. et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343: 457-462. DOI:10.1056/NEJM200008173430702.
  • 16 Chauhan AK, Kisucka J, Lamb CB. et al. von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood 2007; 109: 2424-2429. DOI:10.1182/blood-2006-06-028241.
  • 17 Cortellaro M, Boschetti C, Cofrancesco E. et al. The PLAT Study: hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Principal results. PLAT Study Group. Progetto Lombardo Atero-Trombosi (PLAT) Study Group. Arterioscler Thromb 1992; 12: 1063-1070. DOI:10.1161/01.ATV.12.9.1063.
  • 18 Tracy RP, Arnold AM, Ettinger W. et al. The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study. Arterioscler Thromb Vasc Biol 1999; 19: 1776-1783. DOI:10.1161/01.ATV.19.7.1776.
  • 19 Meade TW, Cooper JA, Stirling Y. et al. Factor VIII. ABO blood group and the incidence of ischaemic heart disease. Br J Haematol 1994; 88: 601-607. DOI:10.1111/j.1365-2141.1994.tb05079.x.
  • 20 Kawasaki T, Kaida T, Arnout J. et al. A new animal model of thrombophilia confirms that high plasma factor VIII levels are thrombogenic. Thromb Haemost 1999; 81: 306-311.
  • 21 Machlus KR, Lin FC, Wolberg AS. Procoagulant activity induced by vascular injury determines contribution of elevated factor VIII to thrombosis and thrombus stability in mice. Blood 2011; 118: 3960-3968. DOI:10.1182/blood-2011-06-362814.
  • 22 Bi L, Lawler AM, Antonarakis SE. et al. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10: 119-121. DOI:10.1038/ng0595-119.
  • 23 Bi L, Sarkar R, Naas T. et al. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies. Blood 1996; 88: 3446-3450.
  • 24 Rivard GE, Brummel-Ziedins KE, Mann KG. et al. Evaluation of the profile of thrombin generation during the process of whole blood clotting as assessed by thrombelastography. J Thromb Haemost 2005; 03: 2039-2043. DOI:10.1111/j.1538-7836.2005.01513.x.
  • 25 Golder M, Pruss CM, Hegadorn C. et al. Mutation-specific hemostatic variability in mice expressing common type 2B von Willebrand disease substitutions. Blood 2010; 115: 4862-4869. DOI:10.1182/blood-2009-11-253120.
  • 26 Shi CX, Graham FL, Hitt MM. A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J Gene Med 2006; 08: 442-451. DOI:10.1002/jgm.867.
  • 27 Ye P, Thompson AR, Sarkar R. et al. Naked DNA transfer of Factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice. Mol Ther 2004; 10: 117-126. DOI:10.1016/j.ymthe.2004.04.009.
  • 28 Amendola M, Venneri MA, Biffi A. et al. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108-116. DOI:10.1038/nbt1049.
  • 29 Boisclair MD, Lane DA, Wilde JT. et al. A comparative evaluation of assays for markers of activated coagulation and/or fibrinolysis: thrombin-antithrombin complex, D-dimer and fibrinogen/fibrin fragment E antigen. Br J Haematol 1990; 74: 471-479. DOI:10.1111/j.1365-2141.1990.tb06337.x.
  • 30 O’Donnell J, Riddell A, Owens D. et al. Role of the Thrombelastograph as an adjunctive test in thrombophilia screening. Blood Coagul Fibrinolysis 2004; 15: 207-211. DOI:10.1097/00001721-200404000-00002.
  • 31 Reikvam H, Steien E, Hauge B. et al. Thrombelastography. Transfus Apher Sci 2009; 40: 119-123. DOI:10.1016/j.transci.2009.01.019.
  • 32 Sommeijer DW, van Oerle R, Reitsma PH. et al. Analysis of blood coagulation in mice: pre-analytical conditions and evaluation of a home-made assay for thrombin-antithrombin complexes. 2005. Thromb J 2005; 03: 12-21. DOI:10.1186/1477-9560-3-12.
  • 33 Furie B, Furie BC. In vivo thrombus formation. J Thromb Haemost 2007; 05: 12-17. DOI:10.1111/j.1538-7836.2007.02482.x.
  • 34 Ni H, Denis CV, Subbarao S. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 385-392. DOI:10.1172/JCI9896.
  • 35 Denis C, Methia N, Frenette PS. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524-9529. DOI:10.1073/pnas.95.16.9524.
  • 36 Brill A. A ride with ferric chloride. J Thromb Haemost 2011; 09: 776-778. DOI:10.1111/j.1538-7836.2011.04238.x.
  • 37 Wang L, Miller C, Swarthout RF. et al. Vascular smooth muscle-derived tissue factor is critical for arterial thrombosis after ferric chloride-induced injury. Blood 2009; 113: 705-713. DOI:10.1182/blood-2007-05-090944.
  • 38 Cao W, Krishnaswamy S, Camire RM. et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Natl Acad Sci USA 2008; 105: 7416-7421. DOI:10.1073/pnas.0801735105.
  • 39 Skipwith CG, Cao W, Zheng XL. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fluid shear stress. J Biol Chem 2010; 285: 28596-28603. DOI:10.1074/jbc.M110.131227.
  • 40 Cao W, Sabatino DE, Altynova E. et al. Light Chain of Factor VIII Is Sufficient for Accelerating Cleavage of von Willebrand Factor by ADAMTS13 Metalloprotease. J Biol Chem. 2012 in press