Thromb Haemost 2011; 105(01): 169-180
DOI: 10.1160/TH10-03-0194
New Technologies, Diagnostic Tools and Drugs
Schattauer GmbH

Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy

Beate Luxembourg
1   Institute of Transfusion Medicine and Immunohaematology, Department of Molecular Haemostaseology, DRK Blood Donor Service Baden-Württemberg – Hessen, Frankfurt, Germany
2   Department of Internal Medicine, Division of Vascular Medicine and Haemostaseology, University Hospital Frankfurt, Germany
,
Katharina Schneider
2   Department of Internal Medicine, Division of Vascular Medicine and Haemostaseology, University Hospital Frankfurt, Germany
,
Katja Sittinger
1   Institute of Transfusion Medicine and Immunohaematology, Department of Molecular Haemostaseology, DRK Blood Donor Service Baden-Württemberg – Hessen, Frankfurt, Germany
,
Stefan W. Toennes
3   Institute of Forensic Toxicology, Centre of Legal Medicine, University Hospital Frankfurt, Germany
,
Erhard Seifried
1   Institute of Transfusion Medicine and Immunohaematology, Department of Molecular Haemostaseology, DRK Blood Donor Service Baden-Württemberg – Hessen, Frankfurt, Germany
,
Edelgard Lindhoff-Last
2   Department of Internal Medicine, Division of Vascular Medicine and Haemostaseology, University Hospital Frankfurt, Germany
,
Johannes Oldenburg
4   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
,
Christof Geisen
1   Institute of Transfusion Medicine and Immunohaematology, Department of Molecular Haemostaseology, DRK Blood Donor Service Baden-Württemberg – Hessen, Frankfurt, Germany
› Author Affiliations
Further Information

Publication History

Received: 25 March 2010

Accepted after major revision: 10 September 2010

Publication Date:
22 November 2017 (online)

Summary

Compared to warfarin, little is known about the effect of pharmacogenomics on the inter-individual variability of phenprocoumon therapy. In a retrospective cohort study, we investigated the impact of VKORC1 c.-1639G>A; CYP2C9*2, CYP2C9*3; GGCX c.214+597G>A; CALU c.*4A>G; EPHX1 c.337T>C; F7 c.-402G>A, and F7 c.-401G>T on the initiation (n=54) and maintenance phases (n=91) of phenprocoumon therapy. We assessed the following outcome parameters: time to stable international normalised ratio (INR), time to first supra-therapeutic INR, time out of INR range, probability of over-anticoagulation, number of anticoagulation clinic visits. During the initiation phase, homozygotes for the VKORC1 c.-1639 A and G alleles achieved stable INRs later (p<0.001), spent more time at supra-therapeutic INRs (p<0.001), had increased risks of over-anticoagulation (odds ratio 19.83, p=0.003 and 4.45, p=0.045, respectively), and had higher frequencies of anticoagulation clinic visits (p<0.001) compared to GA carriers. CYP2C9*2, *3 carriers reached stable INRs faster (p=0.024) with fewer anticoagulation clinic visits (p=0.001) than wild-type carriers. EPHX1 c.337 C carrier spent significantly more time above range in the initiation phase (p=0.023). GGCX, CALU, and F7 gene variants did not affect outcome parameters of the initiation phase and none of the genotypes had an impact on maintenance phase parameters. Compared to the VKORC1 genotype, early INR values were less informative in the prediction of outcome parameters such as time to stable INR and time above the INR range. Our study is limited by the retrospective study design with no standardised protocol in a usual care setting. Therefore, our findings should be validated in a larger, controlled prospective study.

 
  • References

  • 1 Ansell J, Hirsh J, Hylek E. et al. Pharmacology and management of the vitamin K antagonists. Chest 2008; 133: 160S-198S.
  • 2 Stehle S, Kirchheiner J, Lazar A. et al. Pharmacogenetics of oral anticoagulants. A basis for dose individualization. Clin Pharmacokinet 2008; 47: 565-594.
  • 3 Oldenburg J, Bevans CG, Fregin A. et al. Current pharmacogenetic developments in oral anticoagulation therapy: The influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 2007; 98: 570-578.
  • 4 Rost S, Fregin A, Ivaskevicius V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-541.
  • 5 Oldenburg J, Watzka M, Rost S, Müller CR. VKORC1: molecular target of coumarins. J Thromb Haemost 2007; 05: 1-6.
  • 6 Rieder MJ, Reiner AP, Gage BF. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285-2293.
  • 7 Yuan HY, Chen JJ, Lee MT. et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005; 14: 1745-1751.
  • 8 Rettie AE, Wienkers LC, Gonzalez FJ. et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 04: 39-41.
  • 9 Scordo MG, Pengo V, Spina E. et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702-710.
  • 10 Aithal GP, Day CP, Kesteven PJ. et al. Association of polymorphisms in the cytoch-rome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717-719.
  • 11 Meckley LM, Wittkowsky AK, Rieder MJ. et al. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost 2008; 100: 229-239.
  • 12 Margaglione M, Colaizzo D, D’Andrea G. et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000; 84: 775-778.
  • 13 Vecsler M, Loebstein R, Almog S. et al. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 2006; 95: 205-211.
  • 14 González-Conejero R, Corral J, Roldán V. et al. The genetic interaction between VKORC1 c1173t and calumenin a29809g modulates the anticoagulant response of acenocoumarol. J Thromb Haemost 2007; 05: 1701-1706.
  • 15 Shikata E, Ieiri I, Ishiguro S. et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630-2635.
  • 16 Kimura R, Miyashita K, Kokubo Y. et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120: 181-186.
  • 17 Loebstein R, Vecsler M, Kurnik D. et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytoch-rome P450 2C9. Clin Pharmacol Ther 2005; 77: 365-372.
  • 18 Wadelius M, Chen LY, Downes K. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 05: 262-270.
  • 19 D’Ambrosio RL, D’Andrea G, Cappucci F. et al. Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin. Haematologica 2004; 89: 1510-1516.
  • 20 Schalekamp T, Brasse BP, Roijers JF. et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007; 81: 185-193.
  • 21 Visser LE, van Schaik RH, van Vliet M. et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004; 92: 61-66.
  • 22 Qazim B, Stöllberger C, Krugluger W. et al. Dependency of phenprocoumon dosage on polymorphisms in the VKORC1 and CYP2C9 genes. J Thromb Thrombolysis 2009; 28: 211-214.
  • 23 Arnold M, Grond-Ginsbach C, Kloss M. et al. Pharmacogenetic testing for guiding de novo phenprocoumon therapy in stroke patients. Cerebrovasc Dis 2009; 28: 468-471.
  • 24 Reitsma PH, van der Heijden JF, Groot AP. et al. A C1137T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med 2005; 02: e312.
  • 25 Cadamuro J, Dieplinger B, Felder T. et al. Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements. Eur J Clin Pharmacol 2010; 66: 253-260.
  • 26 Beinema M, Brouwers JR, Schalekamp T. et al. Pharmacogenetic differences between warfarin, acenoucoumarol and phenprocoumon. Thromb Haemost 2008; 100: 1052-1057.
  • 27 Ufer M, Svensson JO, Krausz KW. et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004; 60: 173-182.
  • 28 Rombouts EK, Rosendaal FR, van der Meer FJ. Subtherapeutic oral anticoagulant therapy: Frequency and risk factors. Thromb Haemost 2009; 101: 552-556.
  • 29 van Geest-Daalderop JH, Péquériaux NC, van den Besselaar AM. Variability of INR in patients on stable long-term treatment with phenprocoumon and acenocoumarol and implications for analytical quality requirements. Thromb Haemost 2009; 102: 588-592.
  • 30 Fihn SD, Gadisseur AA, Pasterkamp E. et al. Comparison of control and stability of oral anticoagulant therapy using acenocoumarol versus phenprocoumon. Thromb Haemost 2003; 90: 260-266.
  • 31 Geisen C, Watzka M, Sittinger K. et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005; 94: 773-779.
  • 32 Rosendaal FR, Cannegieter SC, van der Meer FJ. et al. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost 1993; 69: 236-239.
  • 33 van’t Hooft FM, Silveira A, Tornvall P. et al. Two common functional polymorphisms in the the promoter region of the coagulation factor VII gene determining plasma factor VII activity and mass concentration. Blood 1999; 93: 3432-3441.
  • 34 Schalekamp T, Oosterhof M, van Meegen E. et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004; 76: 409-417.
  • 35 Cranenburg EC, Schurgers LJ, Vermeer C. Vitamin K: the coagulation vitamin that became omnipotent. Thromb Haemost 2007; 98: 120-125.
  • 36 Wajih N, Sane DC, Hutson SM. et al. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J Biol Chem 2004; 279: 25276-25283.
  • 37 Wadelius M, Chen LY, Lindh JD. et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113: 784-792.
  • 38 Guenthner TM, Cai D, Wallin R. Co-purification of microsomal epoxide hydro-lase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Biochem Pharmacol 1998; 55: 169-175.
  • 39 Cain D, Hutson SM, Wallin R. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 1998; 80: 128-133.
  • 40 Hassett C, Aicher L, Sidhu JS. et al. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 1994; 03: 421-428.
  • 41 Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase-polymorphism and role in toxicology. Toxicol Lett 2000; 112–113: 365-370.
  • 42 Hassett C, Lin J, Carty CL. et al. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys 1997; 337: 275-283.
  • 43 Herman D, Peternel P, Stegnar M. et al. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006; 95: 782-787.
  • 44 Li C, Schwarz UI, Ritchie MD. et al. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood 2009; 113: 3925-3930.
  • 45 Ferder NS, Eby CS, Deych E. et al. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy. J Thromb Haemost 2010; 08: 95-100.
  • 46 Lazo-Langner A, Monkman K, Kovacs MJ. Predicting warfarin maintenance dose in patients with venous thromboembolism based on the response to a standardized warfarin initiation nomogram. J Thromb Haemost 2009; 07: 1276-1283.
  • 47 Le Gal G, Carrier M, Tierney S. et al. Prediction of the warfarin maintenance dose after completion of the 10 mg initiation nomogram: do we really need genotyping?. J Thromb Haemost 2010; 08: 90-94.
  • 48 Michaud V, Vanier MC, Brouillette D. et al. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin Pharmacol Ther 2008; 83: 740-748.
  • 49 Eckman MH, Rosand J, Greenberg SM, Gage BF. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 2009; 150: 73-83.
  • 50 Kim YK, Nieuwlaat R, Connolly SJ. et al. Effect of a simple two-step warfarin dosing algorithm on anticoagulant control as measured by time in therapeutic range: a pilot study. J Thromb Haemost 2010; 08: 101-106.