Thromb Haemost 2008; 100(03): 374-376
DOI: 10.1160/TH08-07-0476
Editorial Focus
Schattauer GmbH

Role for heparan sulfate proteoglycan in thrombin-induced calcium transients and nitric oxide production in aortic endothelial cells

Catheleyne D’hondt
1   Laboratory of Molecular and Cellular Signalling, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 24 July 2008

Accepted 24 July 2008

Publication Date:
22 November 2017 (online)

 

 
  • References

  • 1 Strukova SM. Thrombin as a regulator of inflammation and reparative processes in tissues. Biochemistry (Mosc) 2001; 66: 8-18.
  • 2 Martorell L. et al. Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 2008; 99: 305-315.
  • 3 Kimura C, Oike M. Heparan sulfate proteoglycan is essential to thrombin-induced calcium transients and nitric oxide production in aortic endothelial cells. Thromb Haemost 2008; 100: 483-488.
  • 4 Bishop JR. et al. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446: 1030-1037.
  • 5 Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 06: 633-643.
  • 6 Qiao D. et al. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 2003; 278: 16045-16053.
  • 7 Florian JA. et al. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93: e136-142.
  • 8 Kimura C, Oike M, Ito Y. Acute glucose overload abolishes Ca2+ oscillation in cultured endothelial cells from bovine aorta: a possible role of superoxide anion. Circ Res 1998; 82: 677-685.
  • 9 Koyama T. et al. Functional implications of Ca2+ mobilizing properties for nitric oxide production in aortic endothelium. Life Sci 2002; 72: 511-520.
  • 10 Tiruppathi C. et al. Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 2006; 13: 693-708.
  • 11 Viana F. et al. Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium. Cell Calcium 1998; 24: 117-127.
  • 12 Damus PS, Hicks M, Rosenberg RD. Anticoagulant action of heparin. Nature 1973; 246: 355-357.
  • 13 Marcum JA, Rosenberg RD. Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun 1985; 126: 365-372.
  • 14 Marcum JA, McKenney JB, Rosenberg RD. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest 1984; 74: 341-350.
  • 15 Marcum JA. et al. Anticoagulantly active heparinlike molecules from mast cell-deficient mice. Am J Physiol 1986; 250: H879-888.
  • 16 Marcum JA. et al. Microvascular heparin-like species with anticoagulant activity. Am J Physiol 1983; 245: H725-733.
  • 17 Marcum JA. et al. Anticoagulantly active heparinlike molecules from cultured fibroblasts. Exp Cell Res 1986; 166: 253-258.
  • 18 Marcum JA. et al. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem 1986; 261: 7507-7517.
  • 19 Hatton MW, Moar SL, Richardson M. Evidence that rabbit 125I-antithrombin III binds to proteoheparan sulphate at the subendothelium of the rabbit aorta in vitro. Blood Vessels 1988; 25: 12-27.
  • 20 de Agostini AI. et al. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol 1990; 111: 1293-1304.
  • 21 Rosenberg RD. Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism. Am J Med 1989; 87 (03) 2S-9S.
  • 22 Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404: 725-728.
  • 23 De Agostini AI, Rosenberg RD. New approaches for defining the molecular basis of anticoagulantly active heparan sulfate production. Ann NY Acad Sci 1991; 614: 279-288.
  • 24 Carey DJ. Syndecans: multifunctional cell-surface co-receptors. Biochem J 1997; 327: 1-16.
  • 25 Fears CY, Woods A. The role of syndecans in disease and wound healing. Matrix Biol 2006; 25: 443-456.
  • 26 Alexopoulou AN, Multhaupt HA, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 2007; 39: 505-528.
  • 27 Lindahl U. Heparan sulfate-protein interactions--a concept for drug design?. Thromb Haemost 2007; 98: 109-115.
  • 28 Timpl R, Brown JC. Supramolecular assembly of basement membranes. Bioessays 1996; 18: 123-132.
  • 29 Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 06: 530-541.
  • 30 Bernfield M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729-777.
  • 31 Bogatcheva NV, Garcia JGN, Verin AD. Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 2002; 67: 75-84.