Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00035024.xml
Thromb Haemost 2007; 98(01): 77-83
DOI: 10.1160/TH07-04-0250
DOI: 10.1160/TH07-04-0250
Anniversary Issue Contribution
Fifty years of research on the plasma kallikrein-kinin system: From protein structure and function to cell biology and in-vivo pathophysiology
Financial support: This study was supported by NIH Cancer Grant CA8321–09, Arthritis Grant R0107365–01, and Training Grant T32HL07777–14.Further Information
Publication History
Received
05 April 2007
Accepted
17 May 2007
Publication Date:
29 November 2017 (online)
-
References
- 1 Colman RW, Bagdasarian A, Talamo RC. et al. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 1975; 56: 1650-1662.
- 2 Jacobsen S, Kriz M. Some data on two purified kininogens from human plasma. Br J Pharmacol 1967; 29: 25-36.
- 3 Kitamura N, Kitagawa H, Fukushima D. et al. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem 1985; 260: 8610-8617.
- 4 Hayashi H, Koya H, Kuroda M. et al. The first cases of Fitzgerald factor deficiency in the Orient: three cases in one family. Acta Haematol 1980; 63: 107-113.
- 5 Oh-ishi S, Satoh K, Hayashi I. et al. Differences in prekallikrein and high molecular weight kininogen levels in two strains of Brown Norway rat (Kitasato strain and Katholiek strain). Thromb Res 1982; 28: 143-147.
- 6 Colman RW, Marder VJ, Clowes AW. et al. Contact activation (Kallikrein-Kinin) pathway: multiple physiologic and pathophysiologic activities. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. pp. 109-113.
- 7 Mandle RJ, Colman RW, Kaplan AP. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci USA 1976; 73: 4179-4183.
- 8 Schapira M, Scott CF, James A. et al. High molecular weight kininogen or its light chain protects human plasma kallikrein from inactivation by plasma protease inhibitors. Biochemistry 1982; 21: 567-572.
- 9 Scott CF, Schapira M, James HL. et al. Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen. J Clin Invest 1982; 69: 844-852.
- 10 Colman RW, Silver LD, Purdon AD. et al. Regulation of the coagulant activity and surface binding of high molecular weight kininogen. Trans Assoc Am Physicians 1984; 97: 113-123.
- 11 Brash JL, Scott CF, ten Hove P. et al. Mechanism of transient adsorption of fibrinogen from plasma to solid surfaces: role of the contact and fibrinolytic systems. Blood 1988; 71: 932-939.
- 12 Lindon JN, McManama G, Kushner L. et al. Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces?. Blood 1986; 68: 355-362.
- 13 Puri RN, Zhou F, Hu CJ. et al. High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets. Blood 1991; 77: 500-507.
- 14 Gustafson EJ, Schmaier AH, Wachtfogel YT. et al. Human neutrophils contain and bind high molecular weight kininogen. J Clin Invest 1989; 84: 28-35.
- 15 Schapira M, Despland E, Scott CF. et al. Purified human plasma kallikrein aggregates human blood neutrophils. J Clin Invest 1982; 69: 1199-1202.
- 16 Wachtfogel YT, Kucich U, James HL. et al. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 1983; 72: 1672-1677.
- 17 Schmaier AH, Schutsky D, Farber A. et al. Determination of the bifunctional properties of high molecular weight kininogen by studies withmonoclonal anti-bodies directed to each of its chains. J Biol Chem 1987; 262: 1405-1411.
- 18 Hirsch EF, Nakajima T, Oshima G. et al. Kinin system responses in sepsis after trauma in man. J Surg Res 1974; 17: 147-153.
- 19 Schapira M, Silver LD, Scott CF. et al. Prekallikrein activation and high-molecular-weight kininogen consumption inhereditaryangioedema. N Engl J Med 1983; 308: 1050-1053.
- 20 Wong PY, Williams GH, Colman RW. Studies on therenin-angiotensin system in akininogen-deficient individual. Clin Sci (Lond) 1983; 65: 121-126.
- 21 Raja SN, Campbell JN, Meyer RA. et al. Role of kinins in pain and hyperalgesia: psychophysical studies in a patient with kininogen deficiency. Clin Sci(Lond) 1992; 83: 337-341.
- 22 Shariat-Madar Z, Mahdi F, Schmaier AH. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 2004; 103: 4554-4561.
- 23 Regoli D, Calo’ G, Rizzi A. et al. Bradykinin receptors and receptor ligands(with special emphasis on vascular receptors). Regul Pept 1996; 65: 83-89.
- 24 Reddigari S, Silverberg M, Kaplan AP. Assembly of the human plasma kinin-forming cascade along the surface of vascular endothelial cells. Int Arch Allergy Immunol 1995; 107: 93-94.
- 25 DeLaCadena RA, Laskin KJ, Pixley RA. et al. Role of kallikrein-kinin system in pathogenesis of bacterial cell wall-induced inflammation. Am J Physiol 1991; 260: G213-219.
- 26 Palm O, Moum B, Jahnsen J. et al. The prevalence and incidence of peripheral arthritis in patients with inflammatory bowel disease, a prospective population-based study (the IBSEN study). Rheumatology 2001; 40: 1256-1261.
- 27 Devani M, Cugno M, Vecchi M. et al. Kallikreinkin in system activation in Crohn’s disease: differences in intestinal and systemic markers. Am J Gastroenterol 2002; 97: 2026-2032.
- 28 Devani M, Vecchi M, Ferrero S. et al. Kallikreinkin in system in inflammatory bowel diseases: Intestinal involvement and correlation with the degree of tissue inflammation. Dig Liver Dis 2005; 37: 665-673.
- 29 DeLaCadena RA, Sartor RB, Adam A. et al. Role of kallikrein-kinin system in the pathogenesis of bacterial cell wall-induced inflammation and enterocolitis. Trans Assoc Am Physicians 1992; 105: 229-237.
- 30 Isordia-Salas I, Pixley RA, Parekh H. et al. The mutation Ser511Asn leads to N-glycosylation and increases thecleavage of high molecular weight kininogen in rats genetically susceptible to inflammation. Blood 2003; 102: 2835-2842.
- 31 Isordia-Salas I, Pixley RA, Li F. et al. Kininogen deficiency modulates chronic intestinal inflammation in geneticallysusceptible rats. Am J Physiol Gastroin-test Liver Physiol 2002; 283: G180-186.
- 32 Uknis AB, DeLaCadena RA, Janardham R. et al. Bradykin in receptor antagonists type 2 attenuate the inflammatory changes in peptidoglycan-induced acute arthritis in the Lewis rat. Inflamm Res 2001; 50: 149-155.
- 33 Sainz IM, Uknis AB, Isordia-Salas I. et al. Interactions between bradykinin(BK) and cell adhesion molecule (CAM) expression in peptidoglycan-polysaccharide (PG-PS)-induced arthritis. Faseb J 2004; 18: 887-889.
- 34 Couture R, Harrisson M, Vianna RM. et al. Kinin receptors in pain and inflammation. Eur J Pharmacol 2001; 429: 161-176.
- 35 Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for the rapeutic interventions in inflammatory disease. Trends Pharmacol Sci 2003; 24: 640-647.
- 36 Espinola RG, Uknis A, Sainz IM. et al. A monoclonal antibody to high-molecular weight kininogen is the rapeutic in a rodent model of reactive arthritis. Am J Pathol 2004; 165: 969-976.
- 37 Keith Jr. JC, Sainz IM, Isordia-Salas I. et al. A monoclonal antibody against kininogen reduces inflammation in the HLA-B27 transgenic rat. Arthritis Res Ther 2005; 7: R769-776.
- 38 Sainz IM, Isordia-Salas I, Castaneda JL. et al. Modulation of inflammation by kininogen deficiency in a rat model of inflammatory arthritis. Arthritis Rheum 2005; 52: 2549-2552.
- 39 Colman RW, Pixley RA, Najamunnisa S. et al. Binding of high molecular weight kininogen to human endothelialcells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 1997; 100: 1481-1487.
- 40 Joseph K, Ghebrehiwet B, Peerschke EI. et al. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci USA 1996; 93: 8552-8557.
- 41 Hasan AA, Zisman T, Schmaier AH. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci USA 1998; 95: 3615-3620.
- 42 Joseph K, Tholanikunnel BG, Ghebrehiwet B. et al. Interaction of high molecular weight kininogen binding proteins on endothelialcells. Thromb Haemost 2004; 91: 61-70.
- 43 Mahdi F, Shariat-Madar Z, Todd 3rd RF. et al. Expression and colocalization of cytokeratin1and urokinase plasminogen activator receptor on endothelial cells. Blood 2001; 97: 2342-2350.
- 44 Chavakis T, Kanse SM, Lupu F. et al. Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin-and urokinase receptor-dependent interactions. Blood 2000; 96: 514-522.
- 45 Zhang H, Colman RW, Sheng N. Regulation of CD11b/CD18 (Mac-1) adhesion to fibrinogen by urokinase receptor (uPAR). Inflamm Res 2003; 52: 86-93.
- 46 Sheng N, Fairbanks MB, Heinrikson RL. et al. Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1. Blood 2000; 95: 3788-3795.
- 47 Chavakis T, Kanse SM, Pixley RA. et al. Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. Faseb J 2001; 15: 2365-2376.
- 48 Khan MM, Bradford HN, Isordia-Salas I. et al. High-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler Thromb Vasc Biol 2006; 26: 2260-2266.
- 49 Cirino G, Vergnolle N. Proteinase-activated receptors (PARs): crossroads between innate immunity and coagulation. Curr Opin Pharmacol Cancer/Immunomodul 2006; 6: 428-434.
- 50 Yamamura J-i, Morita Y, Takada Y. et al. The fragments of bovine high molecular weight kininogen promote osteoblast proliferation in vitro. J Biochem (Tokyo) 2006; 140: 825-830.