Thromb Haemost 2004; 91(03): 438-449
DOI: 10.1160/TH03-12-0784
Theme Issue Review Article
Schattauer GmbH

Plasminogen activator inhibitor-1 and tumour growth, invasion, and metastasis

Michelle K.V. Durand
1   Department of Molecular Biology, Aarhus University, Denmark
,
Julie S. Bødker
1   Department of Molecular Biology, Aarhus University, Denmark
,
Anni Christensen
1   Department of Molecular Biology, Aarhus University, Denmark
,
Daniel M. Dupont
1   Department of Molecular Biology, Aarhus University, Denmark
,
Martin Hansen
1   Department of Molecular Biology, Aarhus University, Denmark
,
Jan K. Jensen
1   Department of Molecular Biology, Aarhus University, Denmark
,
Signe Kjelgaard
1   Department of Molecular Biology, Aarhus University, Denmark
,
Lisa Mathiasen
1   Department of Molecular Biology, Aarhus University, Denmark
,
Katrine E. Pedersen
1   Department of Molecular Biology, Aarhus University, Denmark
,
Sune Skeldal
1   Department of Molecular Biology, Aarhus University, Denmark
,
Troels Wind
1   Department of Molecular Biology, Aarhus University, Denmark
,
Peter A. Andreasen
1   Department of Molecular Biology, Aarhus University, Denmark
› Institutsangaben
Financial support: The Danish Cancer Society, the Danish Research Agency, the Danish Cancer Research Foundation, the Novo-Nordisk Foundation and the Interdisciplinary Nanoscience Center at the University of Aarhus.
Weitere Informationen

Publikationsverlauf

Received 23. Dezember 2003

Accepted after revision 19. Januar 2004

Publikationsdatum:
05. Dezember 2017 (online)

Summary

In recent decades, evidence has been accumulating showing the important role of urokinase-type plasminogen activator (uPA) in growth, invasion, and metastasis of malignant tumours. The evidence comes from results with animal tumour models and from the observation that a high level of uPA in human tumours is associated with a poor patient prognosis. It therefore initially came as a surprise that a high tumour level of the uPA inhibitor plasminogen activator inhibitor-1 (PAI-1) is also associated with a poor prognosis, the PAI-1 level in fact being one of the most informative biochemical prognostic markers. We review here recent investigations into the possible tumour biological role of PAI-1, performed by animal tumour models, histological examination of human tumours, and new knowledge about the molecular interactions of PAI-1 possibly underlying its tumour biological functions. The exact tumour biological functions of PAI-1 remain uncertain but PAI-1 seems to be multifunctional as PAI-1 is expressed by multiple cell types and has multiple molecular interactions. The potential utilisation of PAI-1 as a target for anti-cancer therapy depends on further mapping of these functions.

 
  • References

  • 1 Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57: 25-40.
  • 2 Irigoyen JP, Munoz-Canoves P, Montero L. et al.. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56: 104-32.
  • 3 Ploug M. Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor. Curr Pharm Des 2003; 09: 1499-528.
  • 4 Behrendt N, List K, Andreasen PA. et al.. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor: rescue of activity through reciprocal pro-enzyme activation. Biochem J 2003; 371: 277-87.
  • 5 Andreasen PA, Kjøller L, Christensen L. et al.. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1-22.
  • 6 Andreasen PA, Georg B, Lund LR. et al.. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrin 1990; 68: 1-19.
  • 7 Wind T, Hansen M, Jensen JK. et al.. The molecular basis for anti-proteolytic and nonproteolytic functions of plasminogen activator inhibitor type-1. Roles of the reactive centre loop, the shutter region, the flexible jointregion and the small serpin fragment. Biol Chem 2002; 383: 21-36.
  • 8 Gils A, Declerck PJ. Structure, function and pathophysiological relevance of plasminogen activator inhibitor-1. Thromb Haemost 2004; 91: 425-37.
  • 9 Irving JA, Pike RN, Lesk AM. et al.. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 2000; 10: 1845-64.
  • 10 Ye S, Goldsmith EJ. Serpins and other covalent protease inhibitors. Curr Opin Struct Biol 2001; 11: 740-5.
  • 11 Stein P, Chothia C. Serpin tertiary structure transformation. J Mol Biol 1991; 221: 615-21.
  • 12 Whisstock JC, Skinner R, Carrell RW. et al.. Conformational changes in serpins: I. The native and cleaved conformations of α1-antitrypsin. J Mol Biol 2000; 296: 685-99.
  • 13 Mottonen J, Strand A, Symersky J. et al.. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355: 270-3.
  • 14 Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet 2002; 03: 759-68.
  • 15 Shubeita HE, Cottey TL, Franke AE. et al.. Mutational and immunochemical analysis of plasminogen activator inhibitor 1. J Biol Chem 1990; 265: 18379-85.
  • 16 Bijnens AP, Gils A, Stassen JM. et al.. The distal hinge of the reactive site loop and its proximity: a target to modulate plasminogen activator inhibitor-1 activity. J Biol Chem 2001; 276: 44912-8.
  • 17 Naessens D, Gils A, Compernolle G. et al.. Elucidation of a novel epitope of a substrateinducing monoclonal antibody against the serpin PAI-1. J Thromb Haemost 2003; 01: 1028-33.
  • 18 Verhamme I, Kvassman JO, Day D. et al.. Accelerated conversion of human plasminogen activator inhibitor-1 to its latent form by antibody binding. J Biol Chem 1999; 274: 17511-7.
  • 19 Eitzman DT, Fay WP, Lawrence DA. et al.. Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro. J Clin Invest 1995; 95: 2416-20.
  • 20 Xue Y, Björquist P, Inghardt T. et al.. Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 1998; 06: 627-36.
  • 21 Urano T, Strandberg L, Johansson LB. et al.. A substrate-like form of plasminogen-activatorinhibitor type 1. Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209: 985-92.
  • 22 Munch M, Heegaard CW, Andreasen PA. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor. Biochim Biophys Acta 1993; 1202: 29-37.
  • 23 Björquist P, Ehnebom J, Inghardt T. et al.. Identification of the binding site for a lowmolecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry 1998; 37: 1227-34.
  • 24 Egelund R, Einholm AP, Pedersen KE. et al.. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands. ligand-induced serpin polymerization. J Biol Chem 2001; 276: 13077-86.
  • 25 Gils A, Stassen JM, Nar H. et al.. Characterization and comparative evaluation of a novel PAI-1 inhibitor. Thromb Haemost 2002; 88: 137-43.
  • 26 Crandall DL, Hennan JK, Elokdah H. et al.. WAY-140312 reduces plasma PAI-1 while maintaining normal platelet aggregation. Biochem Biophys Res Commun 2003; 311: 904-8.
  • 27 Pedersen KE, Einholm AP, Christensen A. et al.. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. Biochem J 2003; 372: 747-55.
  • 28 Bryans J, Charlton P, Chicarelli-Robinson I. et al.. Inhibition of plasminogen activator inhibitor-1 activity by two diketopiperazines, XR330 and XR334 produced by Streptomyces sp. J Antibiot (Tokyo) 1996; 49: 1014-21.
  • 29 Charlton P, Faint R, Barnes C. et al.. XR5118, a novel modulator of plasminogen activator inhibitor-1 (PAI-1), increases endogenous tPA activity in the rat. Fibrinolysis & Proteolysis 1997; 11: 51-6.
  • 30 Charlton PA, Faint RW, Bent F. et al.. Evaluation of a low molecular weight modulator of human plasminogen activator inhibitor- 1 activity. Thromb Haemost 1996; 75: 808-15.
  • 31 Friederich PW, Levi M, Biemond BJ. et al.. Novel low-molecular-weight inhibitor of PAI- 1 (XR5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 1997; 96: 916-21.
  • 32 Folkes A, Roe MB, Sohal S. et al.. Synthesis and in vitro evaluation of a series of diketopiperazine inhibitors of plasminogen activator inhibitor-1. Bioorg Med Chem Lett 2001; 11: 2589-92.
  • 33 Wang S, Golec J, Miller W. et al.. Novel inhibitors of plasminogen activator inhibitor-1: development of new templates from diketopiperazines. Bioorg Med Chem Lett 2002; 12: 2367-70.
  • 34 De Nanteuil G, Lila-Ambroise C, Rupin A. et al.. New fibrinolytic agents: benzothiophene derivatives as inhibitors of the t-PA-PAI-1 complex formation. Bioorg Med Chem Lett 2003; 13: 1705-8.
  • 35 Einholm AP, Pedersen KE, Wind T. et al.. Biochemical mechanism of action of a diketop-iperazine inactivator of plasminogen activator inhibitor-1. Biochem J 2003; 373: 723-32.
  • 36 Ehnebom J, Björquist P, Anderson J-O. et al.. Detergent Tween 80 modifies the specific activity of PAI-1. Fibrinolysis & Proteolysis 1997; 11: 165-70.
  • 37 Gils A, Declerck PJ. Modulation of plasminogen activator inhibitor 1 by Triton X-100— identification of two consecutive conformational transitions. Thromb Haemost 1998; 80: 286-91.
  • 38 Gils A, Knockaert I, Brouwers E. et al.. Glycosylation dependent conformational transitions in plasminogen activator inhibitor-1: evidence for the presence of two active conformations. Fibrinolysis & Proteolysis 2000; 14: 58-64.
  • 39 Gils A, Pedersen KE, Skottrup P. et al.. Biochemical importance of glycosylation of plasminogen activator inhibitor-1. Thromb Haemost 2003; 90: 206-17.
  • 40 Andreasen PA, Egelund R, Jensen S. et al.. Solvent effects on activity and conformation of plasminogen activator inhibitor-1. Thromb Haemost 1999; 81: 407-14.
  • 41 Gårdsvoll H, van Zonneveld AJ, Holm A. et al.. Selection of peptides that bind to plasminogen activator inhibitor 1 (PAI-1) using random peptide phage-display libraries. FEBS Lett 1998; 431: 170-4.
  • 42 Chikanishi T, Shinohara C, Kikuchi T. et al.. Inhibition of plasminogen activator inhibitor-1 by 11-keto-9(E),12(E)-octadecadienoic acid, a novel fatty acid produced by Trichoderma sp. J Antibiot (Tokyo) 1999; 52: 797-802.
  • 43 Neve J, Leone PA, Carroll AR. et al.. Sideroxylonal C, a new inhibitor of human plasminogen activator inhibitor type-1, from the flowers of Eucalyptus albens. J Nat Prod 1999; 62: 324-6.
  • 44 Preissner KT, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 1998; 89: 1-21.
  • 45 Deng G, Royle G, Seiffert D. et al.. The PAI- 1/vitronectin interaction: two cats in a bag?. Thromb Haemost 1995; 74: 66-70.
  • 46 Lawrence DA, Berkenpas MB, Palaniappan S. et al.. Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J Biol Chem 1994; 269: 15223-8.
  • 47 van Meijer M, Gebbink RK, Preissner KT. et al.. Determination of the vitronectin binding site on plasminogen activator inhibitor 1 (PAI- 1). FEBS Lett 1994; 352: 342-6.
  • 48 Padmanabhan J, Sane DC. Localization of a vitronectin binding region of plasminogen activator inhibitor-1. Thromb Haemost 1995; 73: 829-34.
  • 49 Arroyo De Prada N, Schroeck F. et al.. Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin. Eur J Biochem 2002; 269: 184-92.
  • 50 Jensen JK, Wind T, Andreasen PA. The vitronectin binding area of plasminogen activator inhibitor-1, mapped by mutagenesis and protection against an inactivating organochemical ligand. FEBS Lett 2002; 521: 91-4.
  • 51 Zhou A, Huntington JA, Pannu NS. et al.. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 2003; 10: 541-4.
  • 52 Jensen JK, Durand MK, Skeldal S. et al.. Construction of a plasminogen activator inhibitor-1 variant without measurable affinity to vitronectin but otherwise normal. FEBS Lett 2004; 556: 175-9.
  • 53 Cubellis MV, Wun TC, Blasi F. Receptormediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. Embo J 1990; 09: 1079-85.
  • 54 Jensen PH, Christensen EI, Ebbesen P. et al.. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells. Cell Regulation 1990; 01: 1043-56.
  • 55 Li Y, Knisely JM, Lu W. et al.. Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J Biol Chem 2002; 277: 42366-71.
  • 56 Nykjær A, Petersen CM, Møller B. et al.. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase. plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 1992; 267: 14543-6.
  • 57 Moestrup SK, Nielsen S, Andreasen P. et al.. Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator-plasminogen activator inhibitor type-1 complexes. J Biol Chem 1993; 268: 16564-70.
  • 58 Heegaard CW, Simonsen AC, Oka K. et al.. Very low density lipoprotein receptor binds and mediates endocytosis of urokinase-type plasminogen activator-type-1 plasminogen activator inhibitor complex. J Biol Chem 1995; 270: 20855-61.
  • 59 Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem 1998; 379: 951-64.
  • 60 Mikhailenko I, Considine W, Argraves KM. et al.. Functional domains of the very low density lipoprotein receptor: molecular analysis of ligand binding and acid-dependent ligand dissociation mechanisms. J Cell Sci 1999; 112: 3269-81.
  • 61 Rettenberger PM, Oka K, Ellgaard L. et al.. Ligand binding properties of the very low density lipoprotein receptor. Absence of the third complement-type repeat encoded by exon 4 is associated with reduced binding of Mr 40,000 receptor-associated protein. J Biol Chem 1999; 274: 8973-80.
  • 62 Andersen OM, Petersen HH, Jacobsen C. et al.. Analysis of a two-domain binding site for the urokinase-type plasminogen activatorplasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein. Biochem J 2001; 357: 289-96.
  • 63 Nykjær A, Kjøller L, Cohen RL. et al.. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem 1994; 269: 25668-76.
  • 64 Stefansson S, Muhammad S, Cheng XF. et al.. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem 1998; 273: 6358-66.
  • 65 Rodenburg KW, Kjøller L, Petersen HH. et al.. Binding of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex to the endocytosis receptors α2-macroglobulin receptor/low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor. Biochem J 1998; 329: 55-63.
  • 66 Horn IR, van den Berg BM, Moestrup SK. et al.. Plasminogen activator inhibitor 1 contains a cryptic high affinity receptor binding site that is exposed upon complex formation with tissue-type plasminogen activator. Thromb Haemost 1998; 80: 822-8.
  • 67 Conese M, Nykjær A, Petersen CM. et al.. α2-macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol 1995; 131: 1609-22.
  • 68 Nykjær A, Conese M, Christensen EI. et al.. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J 1997; 16: 2610-20.
  • 69 Li Y, Lu W, Marzolo MP. et al.. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J Biol Chem 2001; 276: 18000-6.
  • 70 Zhang JC, Sakthivel R, Kniss D. et al.. The low density lipoprotein receptor-related protein/ α2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells. J Biol Chem 1998; 273: 32273-80.
  • 71 Blasi F. uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways?. Immunol Today 1997; 18: 415-7.
  • 72 Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 2000; 12: 613-20.
  • 73 Kjøller L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol Chem 2002; 383: 5-19.
  • 74 Liu D, Aguirre JGhiso, Estrada Y. et al.. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002; 01: 445-57.
  • 75 Sturge J, Wienke D, East L. et al.. GPIanchored uPAR requires Endo180 for rapid directional sensing during chemotaxis. J Cell Biol 2003; 162: 789-94.
  • 76 Behrendt N, Jensen ON, Engelholm LH. et al.. A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 2000; 275: 1993-2002.
  • 77 Degryse B, Sier CF, Resnati M. et al.. PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor. FEBS Lett 2001; 505: 249-54.
  • 78 Rice DS, Curran T. Mutant mice with scrambled brains: understanding the signaling pathways that control cell positioning in the CNS. Genes Dev 1999; 13: 2758-73.
  • 79 Nykjær A, Willnow TE. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?. Trends Cell Biol 2002; 12: 273-80.
  • 80 Webb DJ, Thomas KS, Gonias SL. Plasminogen activator inhibitor 1 functions as a urokinase response modifier at the level of cell signaling and thereby promotes MCF-7 cell growth. J Cell Biol 2001; 152: 741-52.
  • 81 Ciambrone GJ, McKeown-Longo PJ. Plasminogen activator inhibitor type I stabilizes vitronectin-dependent adhesions in HT- 1080 cells. J Cell Biol 1990; 111: 2183-95.
  • 82 Palmieri D, Lee JW, Juliano RL. et al.. Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDAMB-435 breast cancer cells. J Biol Chem 2002; 277: 40950-7.
  • 83 Isogai C, Laug WE, Shimada H. et al.. Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res 2001; 61: 5587-94.
  • 84 Stahl A, Mueller BM. Melanoma cell migration on vitronectin: regulation by components of the plasminogen activation system. Int J Cancer 1997; 71: 116-22.
  • 85 Loskutoff DJ, Curriden SA, Hu G. et al.. Regulation of cell adhesion by PAI-1. APMIS 1999; 107: 54-61.
  • 86 Sugiura Y, Ma L, Sun B. et al.. The plasminogen-plasminogen activator (PA) system in neuroblastoma: role of PA inhibitor-1 in metastasis. Cancer Res 1999; 59: 1327-36.
  • 87 Wohn KD, Schmidt T, Kanse SM. et al.. The role of plasminogen activator inhibitor-1 as inhibitor of platelet and megakaryoblastic cell adhesion. Br J Haematol 1999; 104: 901-8.
  • 88 Deng G, Curriden SA, Hu G. et al.. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol 2001; 189: 23-33.
  • 89 Tanaka S, Koyama H, Ichii T. et al.. Fibrillar collagen regulation of plasminogen activator inhibitor-1 is involved in altered smooth muscle cell migration. Arterioscler Thromb Vasc Biol 2002; 22: 1573-8.
  • 90 Czekay RP, Aertgeerts K, Curriden SA. et al.. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160: 781-91.
  • 91 Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin αVβ3 binding to vitronectin. Nature 1996; 383: 441-3.
  • 92 Kjøller L, Kanse SM, Kirkegaard T. et al.. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res 1997; 232: 420-9.
  • 93 Okada SS, Grobmyer SR, Barnathan ES. Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol 1996; 16: 1269-76.
  • 94 Wijnberg MJ, Quax PH, Nieuwenbroek NM. et al.. The migration of human smooth muscle cells in vitro is mediated by plasminogen activation and can be inhibited by alpha2-macroglobulin receptor associated protein. Thromb Haemost 1997; 78: 880-6.
  • 95 Weaver AM, Hussaini IM, Mazar A. et al.. Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptorrelated protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin. J Biol Chem 1997; 272: 14372-9.
  • 96 Sandberg T, Casslen B, Gustavsson B. et al.. Human endothelial cell migration is stimulated by urokinase plasminogen activator:plasminogen activator inhibitor 1 complex released from endometrial stromal cells stimulated with transforming growth factor beta1; possible mechanism for paracrine stimulation of endometrial angiogenesis. Biol Reprod 1998; 59: 759-67.
  • 97 Zhu Y, Bujo H, Yamazaki H. et al.. Enhanced expression of the LDL receptor family member LR11 increases migration of smooth muscle cells in vitro. Circulation 2002; 105: 1830-6.
  • 98 Brückner A, Filderman AE, Kirchheimer JC. et al.. Endogenous receptor-bound urokinase mediates tissue invasion of the human lung carcinoma cell lines A549 and Calu-1. Cancer Res 1992; 52: 3043-7.
  • 99 Kobayashi H, Moniwa N, Gotoh J. et al.. Role of activated protein C in facilitating basement membrane invasion by tumor cells. Cancer Res 1994; 54: 261-7.
  • 100 Praus M, Collen D, Gerard RD. Both u-PA inhibition and vitronectin binding by plasminogen activator inhibitor 1 regulate HT1080 fibrosarcoma cell metastasis. Int J Cancer 2002; 102: 584-91.
  • 101 Liu G, Shuman MA, Cohen RL. Co-expression of urokinase, urokinase receptor and PAI-1 is necessary for optimum invasiveness of cultured lung cancer cells. Int J Cancer 1995; 60: 501-6.
  • 102 Soff GA, Sanderowitz J, Gately S. et al.. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 1995; 96: 2593-600.
  • 103 Danø K, Andreasen PA, Grøndahl-Hansen J. et al.. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139-266.
  • 104 Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161-95.
  • 105 Duffy MJ, Reilly D, O’Sullivan C. et al.. Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 1990; 50: 6827-9.
  • 106 Jänicke F, Schmitt M, Hafter R. et al.. Urokinase-type plasminogen activator (u-PA) antigen is a predictor of early relapse in breast cancer. Fibrinolysis & Proteolysis 1990; 04: 69-78.
  • 107 Duffy MJ, Duggan C, Maguire T. et al.. Urokinase plasminogen activator as a predictor of aggressive disease in breast cancer. Enzyme Protein 1996; 49: 85-93.
  • 108 Harbeck N, Kates RE, Gauger K. et al.. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1; novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 2004; 91: 450-6.
  • 109 Shapiro RL, Duquette JG, Roses DF. et al.. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res 1996; 56: 3597-604.
  • 110 Sabapathy KT, Pepper MS, Kiefer F. et al.. Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system. J Cell Biol 1997; 137: 953-63.
  • 111 Bugge TH, Kombrinck KW, Xiao Q. et al.. Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 1997; 90: 4522-31.
  • 112 Bugge TH, Lund LR, Kombrinck KK. et al.. Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 1998; 16: 3097-104.
  • 113 Almholt K, Lund LR, Rygaard J. et al.. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Cancer Res. 2004 Submitted.
  • 114 Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411: 375-9.
  • 115 Dvorak HF, Brown LF, Detmar M. et al.. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029-39.
  • 116 Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21: 1104-17.
  • 117 Rakic JM, Maillard C, Jost M. et al.. Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 2003; 60: 463-73.
  • 118 Rønnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 1996; 76: 69-125.
  • 119 Rønnov-Jessen L, Petersen OW, Koteliansky VE. et al.. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95: 859-73.
  • 120 De Wever O, Mareel M. Role of myofibroblasts at the invasion front. Biol Chem 2002; 383: 55-67.
  • 121 Wernert N. The multiple roles of tumour stroma. Virchows Arch 1997; 430: 433-43.
  • 122 Pupa SM, Menard S, Forti S. et al.. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 2002; 192: 259-67.
  • 123 Podor TJ, Peterson CB, Lawrence DA. et al.. Type 1 Plasminogen Activator Inhibitor Binds to Fibrin via Vitronectin. J Biol Chem. 2000
  • 124 Frandsen TL, Holst-Hansen C, Nielsen BS. et al.. Direct evidence of the importance of stromal urokinase plasminogen activator (uPA) in the growth of an experimental human breast cancer using a combined uPA genedisrupted and immunodeficient xenograft model. Cancer Res 2001; 61: 532-7.
  • 125 Nielsen BS, Sehested M, Timshel S. et al.. Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 1996; 74: 168-77.
  • 126 Nielsen BS, Sehested M, Duun S. et al.. Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. Lab Invest 2001; 81: 1485-501.
  • 127 Jänicke F, Schmitt M, Graeff H. Clinical relevance of the urokinase-type and tissue-type plasminogen activators and their type 1 inhibitor in breast cancer. Sem Thromb Haemost 1991; 17: 303-12.
  • 128 Duffy MJ. Proteases as prognostic markers in cancer. Clin Cancer Res 1996; 02: 613-8.
  • 129 Duffy MJ. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 2002; 48: 1194-7.
  • 130 Ma D, Gerard RD, Li XY. et al.. Inhibition of metastasis of intraocular melanomas by adenovirus-mediated gene transfer of plasminogen activator inhibitor type 1 (PAI-1) in an athymic mouse model. Blood 1997; 90: 2738-46.
  • 131 Jankun J, Keck RW, Skrzypczak-Jankun E. et al.. Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res 1997; 57: 559-63.
  • 132 McMahon GA, Petitclerc E, Stefansson S. et al.. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J Biol Chem 2001; 276: 33964-8.
  • 133 Eitzman DT, Krauss JC, Shen T. et al.. Lack of plasminogen activator inhibitor-1 effect in a transgenic mouse model of metastatic melanoma. Blood 1996; 87: 4718-22.
  • 134 Bajou K, Noel A, Gerard RD. et al.. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 04: 923-8.
  • 135 Bajou K, Masson V, Gerard RD. et al.. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152: 777-84.
  • 136 Almholt K, Nielsen BS, Frandsen TL. et al.. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene 2003; 22: 4389-97.
  • 137 Lambert V, Munaut C, Noel A. et al.. Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. FASEB J 2001; 15: 1021-7.
  • 138 Devy L, Blacher S, Grignet-Debrus C. et al.. The pro-or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16: 147-54.
  • 139 Bacherach E, Itin A, Keshet E. In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc Natl Acad Sci U S A 1992; 89: 10686-90.
  • 140 Palumbo JS, Kombrinck KW, Drew AF. et al.. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000; 96: 3302-9.
  • 141 Tsuchiya H, Sunayama C, Okada G. et al.. Plasminogen activator inhibitor-1 accelerates lung metastasis formation of human fibrosarcoma cells. Anticancer Res 1997; 17: 313-6.
  • 142 Offersen BV, Nielsen BS, Høyer-Hansen G. et al.. The myofibroblast is the predominant plasminogen activator inhibitor-1-expressing cell type in human breast carcinomas. Am J Pathol 2003; 163: 1887-99.
  • 143 Illemann M, Hansen U, Nielsen HJ. et al.. PAI-1 in human colon cancer. Submitted to Hum Pathol. 2004
  • 144 Buchholz M, Biebl A, Neebetae A. et al.. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res 2003; 63: 4945-51.
  • 145 Grant MB, Spoerri PE, Player DW. et al.. Plasminogen activator inhibitor (PAI)-1 overexpression in retinal microvessels of PAI-1 transgenic mice. Invest Ophthalmol Vis Sci 2000; 41: 2296-302.
  • 146 Grant MB, Ellis EA, Caballero S. et al.. Plasminogen activator inhibitor-1 overexpression in nonproliferative diabetic retinopathy. Exp Eye Res 1996; 63: 233-44.
  • 147 Hansen S, Overgaard J, Rose C. et al.. Independent prognostic value of angiogenesis and the level of plasminogen activator inhibitor type 1 in breast cancer patients. Br J Cancer 2003; 88: 102-8.
  • 148 Fox SB, Taylor M, Grøndahl-Hansen J. et al.. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol 2001; 195: 236-43.
  • 149 Sternlicht MD, Kedeshian P, Shao ZM. et al.. The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 1997; 03: 1949-58.
  • 150 Aaboe M, Offersen BV, Christensen A. et al.. Vitronectin in human breast carcinomas. Biochim Biophys Acta 2003; 1638: 72-82.
  • 151 Huang Y, Haraguchi M, Lawrence DA. et al.. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003; 112: 379-88.
  • 152 Schousboe SL, Egelund R, Kirkegaard T. et al.. Vitronectin and substitution of a betastrand 5A lysine residue potentiate activityneutralization of PA inhibitor-1 by monoclonal antibodies against alpha-helix F. Thromb Haemost 2000; 83: 742-51.
  • 153 Wind T, Jensen MA, Andreasen PA. Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1. Implications for antibody-mediated PAI-1-neutralization and vitronectin-binding. Eur J Biochem 2001; 268: 1095-106.
  • 154 Kwaan HC, Wang J, Svoboda K. et al.. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 2000; 82: 1702-8.
  • 155 Sharp AM, Stein PE, Pannu NS. et al.. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure Fold Des 1999; 07: 111-8.
  • 156 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407: 923-6.