J Reconstr Microsurg 2008; 24(5): 361-367
DOI: 10.1055/s-2008-1080540
© Thieme Medical Publishers

Activated Protein C: An Emerging Therapeutic Agent in the Prevention of Ischemia-Reperfusion Injury

Michael Bezuhly1 , Robert Liwski2 , Kenneth A. West3 , Steven F. Morris1
  • 1Division of Plastic and Reconstructive Surgery, Department of Surgery, Dalhousie University, Halifax, Canada
  • 2Department of Pathology, Dalhousie University, Halifax, Canada
  • 3Department of Medicine, Dalhousie University, Halifax, Canada
Further Information

Publication History

Publication Date:
02 July 2008 (online)

ABSTRACT

Free flap necrosis continues to be a significant problem in microvascular surgery. Despite improved microsurgical techniques and equipment, flap loss remains the major operative complication. Although ischemia-induced reperfusion injury remains a significant etiologic factor in flap loss, there is continued interest in endothelial mechanisms that regulate microvascular injury and thrombosis. In recent years, activated protein C (APC) has emerged as a promising therapy in counteracting microcirculatory injury. APC is an anticoagulant that is also involved in signaling pathways that modulate inflammation, apoptosis, and vascular permeability. This article presents the mechanism of action of APC and the benefits of this therapeutic agent, including a possible role in the prevention of free flap ischemia-reperfusion injury.

REFERENCES

  • 1 Morris S F, Pang C Y, Zheng A, Boyd B, Forrest C R. Assessment of ischemia-induced reperfusion injury in the pig latissimus dorsi myocutaneous flap model.  Plast Reconstr Surg. 1993;  92 1162-1172
  • 2 Siemionow M, Arslan E. Ischemia/reperfusion injury: a review in relation to free tissue transfers.  Microsurgery. 2004;  24 468-475
  • 3 Grace P A. Ischaemia-reperfusion injury.  Br J Surg. 1994;  81 637-647
  • 4 Zimmerman B J, Granger D N. Mechanisms of reperfusion injury.  Am J Med Sci. 1994;  307 284-292
  • 5 Goswami S K, Maulik N, Das D K. Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis.  Ann Med. 2007;  39 275-289
  • 6 Huang L, Privalle C T, Serafin D, Klitzman B. Increased survival of skin flaps by scavengers of superoxide radicals.  FASEB J. 1987;  1 129-132
  • 7 Kim Y S, Im M J, Hoopes J E. The effect of a free-radical scavenger, N-2-mercaptopropionylglycine, on the survival of skin flaps.  Ann Plast Surg. 1990;  25 18-20
  • 8 De Greef K E, Ysebaert D K, Ghielli M et al.. Neutrophils and acute ischemia-reperfusion injury.  J Nephrol. 1998;  11 110-122
  • 9 Hossain M A, Wakabayashi H, Izuishi K et al.. The role of prostaglandins in liver ischemia-reperfusion injury.  Curr Pharm Des. 2006;  12 2935-2951
  • 10 Oredsson S, Plate G, Qvarfordt P. Experimental evaluation of oxygen radical scavengers in the prevention of reperfusion injury in skeletal muscle.  Eur J Surg. 1994;  160 97-103
  • 11 Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium: increased monolayer permeability and induction of procoagulant properties.  J Clin Invest. 1990;  85 1090-1098
  • 12 Davies M G, Hagen P O. The vascular endothelium. A new horizon.  Ann Surg. 1993;  218 593-609
  • 13 Rubanyi G M, Polokoff M A. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology.  Pharmacol Rev. 1994;  46 325-415
  • 14 Barnes P J. Nuclear factor-κB.  Int J Biochem Cell Biol. 1997;  29 867-870
  • 15 Toledo-Pereyra L H, Toledo A H, Walsh K, Lopez-Neblina F. Molecular signaling pathways in ischemia/reperfusion.  Exp Clin Transplant. 2004;  2 174-177
  • 16 Barillari G, Albonici L, Incerpi S et al.. Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing α5β1 integrin expression and function.  Atherosclerosis. 2001;  154 377-385
  • 17 Frangogiannis N G. Chemokines in ischemia and reperfusion.  Thromb Haemost. 2007;  97 738-747
  • 18 Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications.  Am Heart J. 1999;  138 S69-75
  • 19 Nishijima K, Kiryu J, Tsujikawa A et al.. In vivo evaluation of platelet-endothelial interactions after transient retinal ischemia.  Invest Ophthalmol Vis Sci. 2001;  42 2102-2109
  • 20 Okada Y, Marchevesky A, Zuo X et al.. Accumulation of platelets in rat syngeneic lung transplants.  Transplantation. 1997;  64 801-806
  • 21 Roberts A M, Ovechkin A V, Mowbray J G, Robinson T W, Lominadze D. Effects of pulmonary ischemia-reperfusion on platelet adhesion in subpleural arterioles in rabbits.  Microvasc Res. 2004;  67 29-37
  • 22 Piccardoni P, Evangelista V, Piccoli A, de Gaetano G, Walz A, Cerletti C. Thrombin activated human platelets release two NAP 2 variants that stimulate polymorphonuclear leukocytes.  Thromb Haemost. 1996;  76 780-785
  • 23 Carvalho-Tavares J, Hickey M J, Hutchison J, Michaud J, Sutcliffe I T, Kubes P. A role for platelets and endothelial selectins in tumor necrosis factor-alpha-induced leukocyte recruitment in the brain microvasculature.  Circ Res. 2000;  87 1141-1148
  • 24 Faint R W. Platelet-neutrophil interactions: their significance.  Blood Rev. 1992;  6 83-91
  • 25 Frenette P S, Moyna C, Hartwell D W, Lowe J B, Hynes R O, Wagner D D. Platelet-endothelial interactions in inflamed mesentric venules.  Blood. 1998;  91 1318-1324
  • 26 Ruf A, Patscheke H. Platelet-induced neutrophil activation: platelet-expressed fibrinogen induces the oxidative burst in neutrophils by an interaction with CD11C/CD18.  Br J Haematol. 1995;  90 791-796
  • 27 Carden D L, Granger D N. Pathophysiology of ischaemia-reperfusion injury.  J Pathol. 2000;  190 255-266
  • 28 Cooper D, Chitman K D, Williams M C, Granger D N. Time-dependent platelet-vessel wall interactions induced by intestinal ischemia-reperfusion.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G1027-G1033
  • 29 Minamino T, Kitakaze M, Sanada S et al.. Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide.  Circulation. 1998;  98 1721-1727
  • 30 Blann A D, Nadar S K, Lip G Y. The adhesion molecule P-selectin and cardiovascular disease.  Eur Heart J. 2003;  24 2166-2179
  • 31 Dardik R, Shenkman B, Tamarin I. Factor XIII mediates adhesion of platelets to endothelial cells through alpha(v) beta(3) and glycoprotein IIb/IIIa integrins.  Thromb Res. 2002;  105 317-323
  • 32 Petruzzelli L, Takami M, Humes H. Structure and function of cell adhesion molecules.  Am J Med. 1999;  106 467-476
  • 33 Schurmann G. Cell adhesion: molecular principles and initial implications for surgery.  Chirurg. 1997;  68 477-487
  • 34 Jung U, Ley K. Regulation of E-selectin, P-selectin, and intercellular adhesion molecule 1 expression in mouse cremaster muscle vasculature.  Microcirculation. 1997;  4 311-319
  • 35 Khandoga A, Biberthaler P, Enders G et al.. Platelet adhesion mediated by fibrinogen-intercellular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo.  Transplantation. 2002;  74 681-688
  • 36 Love S, Barber R. Expression of P-selectin and intracellular adhesion molecule-1 in human brain after focal infarction or cardiac arrest.  Neuropathol Appl Neurobiol. 2001;  27 465-473
  • 37 Perrot M, Liu M, Waddell T, Keshavjee S. Ischemia-reperfusion-induced lung injury.  Am J Respir Crit Care Med. 2003;  167 490-511
  • 38 Haug C E, Colvin R B, Delmonico F L et al.. A phase I trial of immunosuppression with anti-ICAM-1 (CD54) MAb in renal allograft recipients.  Transplantation. 1993;  55 766-772
  • 39 Merchant S H, Gurule D M, Larson R S. Amelioration of ischemia-reperfusion injury with cyclic peptide blockade of ICAM-1.  Am J Physiol Heart Circ Physiol. 2003;  284 H1260-H1268
  • 40 Demirseren M E, Sarici M, Gokrem S, Yenidunya S. Protective effects of monoclonal antibody to intercellular adhesion molecule-1 in venous ischemia-reperfusion injury: experimental study in rats.  J Reconstr Microsurg. 2007;  23 41-44
  • 41 Harris N R, Granger N D. Ischemia/reperfusion injury. In: Toledo-Pereyra LH Organ Procurements and Preservation for Transplantation, 2nd ed. Heidelberg; Springer-Verlag 1997: 67-81
  • 42 Carden D L, Smith J K, Korthuis R J. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence.  Circ Res. 1990;  66 1436-1444
  • 43 Kerrigan C L, Stotland M A. Ischemia reperfusion injury: a review.  Microsurgery. 1993;  14 165-175
  • 44 Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury.  Cardiovasc Res. 2004;  61 481-497
  • 45 Stempien-Otero A, Karsan A, Cornejo C J et al.. Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis.  J Biol Chem. 1999;  274 8039-8045
  • 46 Matsushita H, Morishita R, Nata T et al.. Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated Bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation.  Circ Res. 2000;  86 974-981
  • 47 Walford G A, Moussignac R L, Scribner A W, Loscalzo J, Leopold J A. Hypoxia potentiates nitric oxide-mediated apoptosis in endothelial cells via peroxynitrite-induced activation of mitochondria-dependent and -independent pathways.  J Biol Chem. 2004;  279 4425-4432
  • 48 Lopez-Neblina F, Toledo A H, Toledo-Pereyra L H. Molecular biology of apoptosis in ischemia and reperfusion.  J Invest Surg. 2005;  18 335-350
  • 49 Scarabelli T M, Stephanou A, Pasini E et al.. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury.  Circ Res. 2002;  90 745-748
  • 50 Kohli V, Selzner M, Madden J F, Bentley R C, Clavien P A. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver.  Transplantation. 1999;  67 1099-1105
  • 51 Scarabelli T, Stephanou A, Rayment N et al.. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury.  Circulation. 2001;  104 253-256
  • 52 Iwata A, Harlan J M, Vedder N B, Winn R K. The caspase inhibitor z-VAD is more effective than CD18 adhesion blockade in reducing muscle ischemia-reperfusion injury: implication for clinical trials.  Blood. 2002;  100 2077-2080
  • 53 Griffin J H, Evatt B, Zimmerman T S, Kleiss A J, Wideman C. Deficiency of protein C in congenital thrombotic disease.  J Clin Invest. 1981;  68 1370-1373
  • 54 Branson H E, Katz J, Marble R, Griffin J H. Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant.  Lancet. 1983;  2 1165-1168
  • 55 Bernard G R, Vincent J L, Laterre P F et al.. Efficacy and safety of recombinant human activated protein C for severe sepsis.  N Engl J Med. 2001;  344 699-709
  • 56 Abraham E, Reinhart K, Opal S et al.. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial.  JAMA. 2003;  290 238-247
  • 57 Warren B L, Eid A, Singer P et al.. High-dose antithrombin III in severe sepsis: a randomized controlled trial.  JAMA. 2001;  286 1869-1878
  • 58 Kerschen E J, Fernandez J A, Cooley B C et al.. Endotoxemia and sepsis mortality reduction by non-coagulant activated protein C.  J Exp Med. 2007;  204 2439-2448
  • 59 Gruber A, Griffin J H. Direct detection of activated protein C in blood from human subjects.  Blood. 1992;  79 2340-2348
  • 60 Esmon C. The protein C pathway.  Crit Care Med. 2000;  28(suppl) S44-S48
  • 61 Stearns-Kurosawa D J, Kurosawa S, Mollica J S, Ferrell G L, Esmon C T. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex.  Proc Natl Acad Sci U S A. 1996;  93 10212-10216
  • 62 Bae J S, Yang L, Rezaie A R. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts on endothelial cells.  Proc Natl Acad Sci U S A. 2007;  104 2867-2877
  • 63 Looney M R, Matthay M A. Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury.  Crit Care. 2006;  10 239-244
  • 64 Esmon C T. The protein C pathway.  Chest. 2003;  124 26S-32S
  • 65 Vu T K, Hung D T, Wheaton V I, Coughlin S R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation.  Cell. 1991;  64 1057-1068
  • 66 Joyce D E, Gelbert L, Ciaccia A, DeHoff B, Grinnell B W. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis.  J Biol Chem. 2001;  276 11199-11203
  • 67 Domotor E, Benzakour O, Griffin J H et al.. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1.  Blood. 2003;  101 4797-4801
  • 68 Riewald M, Petrovan R J, Donner A, Mueller B M, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway.  Science. 2002;  296 1880-1882
  • 69 Cheng T, Liu D, Griffin J H et al.. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective.  Nat Med. 2003;  9 338-342
  • 70 Mosnier L O, Griffin J H. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease activated receptor-1 and endothelial cell protein C receptor.  Biochem J. 2003;  373 65-70
  • 71 Joyce D E, Grinnell B W. Recombinant human activated protein C attenuates the inflammatory response in endothelium and monocytes by modulating nuclear factor-kappaB.  Crit Care Med. 2002;  30 S288-S293
  • 72 Franscini N, Bachli E B, Blau N et al.. Gene expression profiling of inflamed human endothelial cells and influence of activated protein C.  Circulation. 2004;  110 2903-2909
  • 73 Hoffmann J N, Vollmar B, Laschke M W et al.. Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition.  Crit Care. 2005;  9 S33-S37
  • 74 Gupta A, Rhodes G J, Berg D T et al.. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.  Am J Physiol Renal Physiol. 2007;  293 F245-F254
  • 75 Bartolome S, Wood J G, Casillan A J, Simpson S Q, O'Brien-Ladner A R. Activated protein C attenuates microvascular injury during systemic hypoxia.  Shock. 2008;  29 384-387
  • 76 McVerry B J, Garcia J G. Endothelial cell barrier regulation by sphingosine 1-phosphate.  J Cell Biochem. 2004;  92 1075-1085
  • 77 Singleton P A, Dudek S M, Chiang E T, Garcia J G. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin.  FASEB J. 2005;  19 1646-1656
  • 78 Bae J S, Yang L, Manithody C, Rezaie A R. The ligand occupancy of endothelial protein C receptor switches the PAR-1-dependent signaling specificity of thrombin from a permeability-enhancing to barrier-protective response in endothelial cells.  Blood. 2007;  110 3909-3916
  • 79 Feistritzer C, Sturn D H, Kaneider N C, Djanani A, Wiedermann C J. Endothelial protein C receptor-dependent inhibition of human eosinophil chemotaxis by protein C.  J Allergy Clin Immunol. 2003;  112 375-381
  • 80 Galligan L, Livingstone W, Volkov Y et al.. Characterization of protein C receptor expression in monocytes.  Br J Haematol. 2001;  115 408-414
  • 81 Sturn D H, Kaneider N C, Feistritzer C et al.. Expression and function of the endothelial protein C receptor in human neutrophils.  Blood. 2003;  102 1499-1505
  • 82 Joyce D E, Nelson D R, Grinnell B W. Leukocyte and endothelial cell interactions in sepsis: relevance of the protein C pathway.  Crit Care Med. 2004;  32 S280-S286
  • 83 Kurosawa S, Esmon C T, Stearns-Kurosawa D J. The soluble endothelial protein C receptor binds to activated neutrophils: involvement of proteinase-3 and CD11b/CD18.  J Immunol. 2000;  165 4697-4703
  • 84 Murakami K, Okajima K, Uchiba M et al.. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats.  Blood. 1996;  87 642-647
  • 85 Taoka Y, Okajima K, Uchiba M et al.. Activated protein C reduces the severity of compression-induced spinal cord injury in rats by inhibiting activation of leukocytes.  J Neurosci. 1998;  18 1393-1398
  • 86 Liu D, Cheng T, Guo H et al.. Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C.  Nat Med. 2004;  10 1379-1383
  • 87 Yamaguchi Y, Hisama N, Okajima K et al.. Pretreatment with activated protein C or active human urinary thrombomodulin attenuates the production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion in rat liver.  Hepatology. 1997;  25 1136-1140
  • 88 Mizutani A, Okajima K, Uchiba M, Noguchi T. Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation.  Blood. 2000;  95 3781-3787
  • 89 Schoots I G, Levi M, van Vliet A K, Maas A M, Roossink E H, van Gulik T M. Inhibition of coagulation and inflammation by activated protein C or antithrombin reduces intestinal ischemia/reperfusion injury in rats.  Crit Care Med. 2004;  32 1375-1383
  • 90 Dillon J P, Laing A J, Cahill R A et al.. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.  J Orthop Res. 2005;  23 1454-1459

Steven F MorrisM.D. M.Sc. 

Division of Plastic and Reconstructive Surgery, Department of Surgery, Dalhousie University

Room 4443, Halifax Infirmary, 1796 Summer Street, Halifax, Nova Scotia, Canada B3H 3A7

    >